
HPC Data Management with
HPE DMF
and SUSE Enterprise Storage

A large customer experience
Alberto Galli HPC Architect alberto.galli@hpe.com
Cedric Milesi HPC Storage & AI Architect cedric.milesi@hpe.com

Sept 2019

mailto:alberto.galli@hpe.com
mailto:cedric.milesi@hpe.com

Agenda
•Technology basics

• DMF Workflow

• DMF Example

• Ceph backend

Technology Basics

Introducing Data Management Framework
Active & Dormant Data Forms

Active Tier
Hot Data

Dormant Tier
Cold Data

HPC/AI Compute Cluster

High-Performance Storage

Scale-out
NAS

Parallel File
Systems

All-Flash
File System

HPE Data Management Framework
Tiered data management

Tape
DMF
zero
watt
storage

Object
Storage
& Cloud

DMF Architecture

DMF Data Manager
Scheduler

DMF SRF
Scheduler

Mesos Master Standby Master Standby Master

Mesos Agent

DMF Data Mover
Exec

TaskTask

Mesos Agent

SRF Executor

TaskTask

Mesos Agent

DMF Data
Mover Exc

Task

SRF
Executor

Task

Zookeeper Quorum

Request Processing Workflow

–DMF supports three (3) HSM command flows:
– DMF CLI or API initiated data movement
– Lustre lfs hsm command initiated data movement
– Filesystem read() of an offline file initiated recall

Confidential 7

Request Processing Workflow
DMF Initiated vs Lustre Initiated Data Movement

Confidential 8

DMF CLI Job
Dispatcher

Lustre
HSM API Copytool Data

Manager Copytool

DMF CLI:

Lustre
HSM API Copytool Data

Manager Copytool

Lustre lfs hsm:
Read() of OFL:

lfs hsm

read()

Lustre
HSM API

Lustre
HSM API

Lustre

Data

Mover

Request Processing Workflow
DMF Get & Put Requests

– Request is initiated via DMF CLI

– Dispatcher creates AnyQ job and calls Lustre HSM API

to asynchronously submit request

– Lustre HSM processes request and calls DMF Copytool

– DMF Copytool locates associated AnyQ job and forwards

it to DMF Lustre Data Manager

– Data Manager schedules data movement operation

through Mesos framework

– Data Movers perform data copy. Upon completion, Data

Manager marks the job accordingly and hands it back to

DMF Copytool

– DMF Copytool calls Lustre HSM API to signal completion

of transfer

– Job Dispatcher polls jobs that have completed transfer

and validates file state transition

– Once file state has transitioned, Job Dispatcher marks

AnyQ job as complete and hands it back to DMF API

server that in turn signals completion to the API caller,

i.e. CLI

Confidential 9

DMF CLI

DMF

Copytool

Data

MoverDMF API

Server

Lustre Job

Dispatcher

Lustre

HSM

Coordinato

r

Lustre

Data

Manager

Data

Mover

AnyQ Job ID

State

Pollin

g

Mesos

llapi_hsm_*()

AnyQ

Job
AnyQ

Job

DMF workflows

How DMF Works: scanning existing FS
When DMF is plugged in the front tier, it will scan all of the data and capture all
the metadata info in a separate metadata repository

11

DMF7

1. Scan data

2. Metadata capture

How DMF Works: Populate new FS with existing data
When DMF is plugged in the front tier, we can populate the metadata with
content of the Cassandra database

12

DMF7

1. Metadata creation

Data Management | DMF 7 Change Log

13

HPE XFS HPE XFS
Event Filter

Persistent
Message Bus

Change Log
Processor DMF DB

Future
Filesystem

Future FS
API

Lustre Persistent
Change Log

– For HPE XFS:

– Use DMAPI events to drive filesystem change log and
filesystem reflection

– Removes the need to scan the filesystem to drive the
policy engine

– Removes the need to backup (e.g. xfsdump) the
filesystem to preserve the namespace

– For Lustre:

– Natively process Lustre persistent change log via API

– Policy engine and filesystem reflection directly out of
DMF7 scale out database without needing RobinHood

– Others filesystems support:

– Makes the DMF front-end filesystem independent

– Persistent message bus use depends on filesystem API

– Unified DMF policy engine for all filesystem types

Data Management | Lustre ChangeLog Processing in DMF 7

14

Event Type Description

MARK Internal recordkeeping

CREAT Regular file creation

MKDIR Directory creation

HLINK Hard link

SLINK Soft link

MKNOD Other file creation

UNLNK Regular file removal

RMDIR Directory removal

RNMFM Rename, original

RNMTO Rename, final

IOCTL ioctl on file or directory

TRUNC Regular file truncated

SATTR Attribute change

XATTR Extended attribute change

UNKNW Unknown operation

– ChangeLog feature records events that change
the file system namespace or file metadata
– See table on the right

– Changes such as file creation, deletion,
renaming, attribute changes, etc. are recorded
with the target and parent file identifiers (FIDs),
the name of the target, and a timestamp

– DMF 7 uses ChangeLog entries to exactly
replicate changes in the file system reflection
– No additional software (such as RobinHood) is

necessary, all work is done natively by DMF 7
ChangeLog processor

– Native processing of ChangeLog into distributed
database enables scalability and Spark queries

How DMF Works

15

Compute Nodes
Execution of Code

Front-end
File Systems

Back-end
Object, ZWS, Tape, Cloud

DMF7

How DMF Works

16

Compute Nodes
Execution of Code

Back-end
Object, ZWS, Tape, Cloud

DMF7

Compute nodes access data

DMF records all
changes to the data

and updates
Cassandra

Front-end
File Systems

Data is staged into
dynamically created

or static namespaces

NamespaceNamespace

1

2

3
Via the policy engine, DMF can
automatically:
• Migrate data from frontend to

backend to free space
• Create copies and store in

backend
• Punch the blocks: delete data
• Anything else administrator needs
All tracked and recorded in
Cassandra

How DMF Works

17

Compute Nodes
Execution of Code

Active Tier Storage

Dormant Tier Storage

DMF7

Cassandra Metadata Repository

Job
Scheduler

How DMF Works
Action: User schedules a job(s), which is then sent to DMF

18

Compute Nodes
Execution of Code

Active Tier Storage
Data & Permissions populated

Dormant Tier Storage
Encrypted pool of all data objects

DMF7

Job
Scheduler

Cassandra Metadata Repository

How DMF Works
Action: This triggers DMF to gather necessary resources and to create a namespace in the
frontend or use an existing namespace

19

Compute Nodes
Execution of Code

Active Tier Storage
Data & Permissions populated

Dormant Tier Storage
Encrypted pool of all data objects

DMF7

Job
Scheduler

Namespace
is created

Cassandra Metadata Repository

How DMF Works
Action: Once namespace is created, the data is staged into the namespace

20

Compute Nodes
Execution of Code

Dormant Tier Storage
Encrypted pool of all data objects

DMF7

Job
Scheduler

Cassandra Metadata Repository

Active Tier Storage
Data & Permissions populated

Dat
a

How DMF Works
Action: Job from scheduler can run on compute nodes by accessing data from the
namespace

21

Compute Nodes
Execution of Code

Dormant Tier Storage
Encrypted pool of all data objects

DMF7

Job
Scheduler

At the same time …

Active Tier Storage
Data & Permissions populated

Dat
a

Cassandra Metadata Repository

How DMF Works
Action: During job execution, DMF monitors the metadata changes according to the
defined policies.

22

Compute Nodes
Execution of Code

Active Tier Storage
Data & Permissions populated

Dormant Tier Storage
Encrypted pool of all data objects

DMF7

Cassandra Metadata Repository

Job
Scheduler

New data encrypted and
New object versions

Changes metadata
attributes

How DMF Works
Action: Once job is done, data is de-staged and tiered down, moved to another
namespace, or torn down.

23

Compute Nodes
Execution of Code

Active Tier Storage
Data & Permissions populated

Dormant Tier Storage
Encrypted pool of all data objects

DMF7

Job
Scheduler

Data is de-staged
Data is either torn-down,
tiered down to dormant form, or
migrated to another namespace

Cassandra Metadata Repository

DMF at work – some examples
How DMF can help here

Migrate, Stage & De-stage Operations

Migration to dataset
dmf put --fs labfs01 --query "dir.path like '/smalldata/1*'" --set one

Destaging to dataset, locating it and staging
dmf destage --fs labfs01 --query "dir.path = '/SecLists/Fuzzing/Polyglots'" --set polyglot

dmf find --query "object.tags contains 'polyglot’”

dmf stage --set polyglot /labfs01/stage_dir

dmf find --query "object.size < 10000 and name like 'run200*'" --set res200

dmf stage --set res200 /labfs01/res_200

Listing Items
dmf list /labfs01/data/1/wholly_evidently_*

dmf list --fs aa305e6c-087a-43e1-a162-406c965021c4 --fid 000e0000-0000-0005-0000-000000000105

dmf list --fs labfs01 --fid 000e0000-0000-0005-0000-000000000105

dmf list --set “polyglot*”

dmf list --obj f0e830d5-ef35-4576-98d6-909478da5713

25

Using stage and destage
different clusters can share data

IB

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

XXX nodes
10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

YYY nodes

IB IB

UID
2

1

4

3

6

5

7 8

1 2

ProLiant
DL360
Gen9

UID
2

1

4

3

6

5

7 8

1 2

ProLiant
DL360
Gen9

Lnet Lnet

Lustre
GPFS
CXFS

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

DMF
Backend

DMF Servers DMF Movers

IB

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

ZZZ nodes

GPFS
Lustre
CXFS

Removing data, undelete data

Offlining data (remove from front end)
Release the data blocks for the /cxfsusr1/10Mfilestest_files-11mb-41
dmf punch /cxfsusr1/10Mfilestest_files-11mb-41

(similar to) lfs hsm_release

Removing data (remove from back end)
Data needs destaged first
dmf remove --query "file.xattr['user']['project'] = 'ocean1’

Undeleting data:

After some data have been mistakenly removed
dmf stage /labfs01/1990_E1/ \ --query "file.xattr['user']['project'] = 'ocean1’

Restore file from project ocean1. Could also be used to get older version of a file(s)

27

DMF: backend Suse enterprise
storage

Concepts

– HPE DMF (Data Management Framework)
– Provides automatic movement of data based upon policies between storage tiers
– Permits archiving i.e. safe enough long term storing of data
– Frees up Tier 0 (costly and not bullet proof) for its main use, i.e. fast access “scratch areas”
– New features will sum up and will provide “magic movement” between tiers at the same level

– SUSE Enterprise Storage – powered by Ceph
– It’s an object storage that provides long term archiving using commodity hardware
– Not really designed for speed but designed for data retention
– Easily expandable
– Provides a good numbers of different gateways giving a good flexibility in its accessibility

Solution at work
– HPE DMF uses Big Data

technology to deal with –
indeed – big data
– Robustness
– Scalability
– High performance

– Ceph can scale as well

IB

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

1600 nodes

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

10

9

8

7

6

14

13

12

11

19

18

17

16

15

24

23

22

21

20

5

4

3

2

1

UID

Apollo
2000 System

750 nodes

IB IB

UID
2

1

4

3

6

5

7 8

1 2

ProLiant
DL360
Gen9

UID
2

1

4

3

6

5

7 8

1 2

ProLiant
DL360
Gen9

Lnet Routers Lnet Routers

CEPHLustre

HPE DMF

SUSE Enterprise Storage
Anatomy

Monitor
Nodes

GW GW GW

S3

GWMDS MDS

FS

Why Object storage (SUSE Enterprise Storage)

– New technology that can easily used not only for archiving
– Object storage can extend its use to different areas inside customer site

– Protocol neutrality
– Using S3 we can dare to say that we are “cloud ready”

– Sill maintain an easy expandability
– Blocks can be added on the fly to the pool

– Why Ceph
– It is largely used
– Open Source
– Price affordable

DMF v7 benchmark: 2x Data Mover + 2 x RGW

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

MaxMovers=192, 768 250m files MaxMovers=64, 768 250m files,
ExecutorCpus 4,ExecutorMem 5000

movers=2,MaxMovers=192, 768 250m
files, ExecutorCpus 0.5,ExecutorMem 100

movers=2,MaxMovers=384, 768 250m
files, ExecutorCpus 0.5,ExecutorMem 100

G
B/

se
c

DMF 7.0 Early Access (XFS)

dmf put dmf get

Backend Performance: S3 Read/Write

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8 16 32

B
A

N
D

W
ID

T
H

 IN
 M

B
/S

NUMBER OF WORKER PER GW

COSBENCH MIXED PERFORMANCE (256MB
OBJ,50% WRITE 50% READ)

single rgw write dual rgw write quad rgw write six rgw write

Thank You
cedric.milesi@hpe.com
alberto.galli@hpe.com

38

mailto:cedric.milesi@hpe.com
mailto:alberto.galli@hpe.com

SUSE Enterprise Storage
Notes on the backend

CephFS capability

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16 18

IOR benchmark (128G files 9+3 EC)

write perf single thread read perf single thread

write perf dual thread read perf dual thread

write perf dual thread + read_ahead read performance dual thread + read_ahead

DMF v6 benchmark: 2 x RGW

0

1

2

3

4

5

6

7

8

msp=1, child=64, 256
250m files

msp=1, child=96, 384
250m files

msp=2, child=96x2, 768
250m files

msp=2, child=16x2, 768
250m files

msp=2, child=32x2, 768
250m files

msp=2, child=24x2, 768
250m files

G
B/

se
c

DMF 6.8 dmcloudmsp (XFS)

dmput dmget

Proof Of Concept outcome

– Ceph is a viable solution in terms of performance
– DMF + Ceph is a viable solution

– Basic configuration (EC scheme, network infrastructure, …) is known
– EC: 9+3
– Network Infrastructure: Seperated Public and Private network should be sufficient
– Need NVMe in OSD
– 1 x RGW is capable of 2GB/s

Just need to scale it

On site performance: S3 Write

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 32 64

B
A

N
D

W
ID

T
H

 IN
 M

B
/S

NUMBER OF WORKER PER GW

COSBENCH WRITE PERFORMANCE (256MB OBJ)

single rgw dual rgw quad rgw six rgw

