
ldiskfs Snapshots
Andreas Dilger

adilger@whamcloud.com

LAD 2022

Snapshot Options Evaluated

ZFS Integrated Snapshots
+ ZFS also allows compression, checksum, dedupe
+ Works well today, reduced core development effort
⁃ Major changes to EXA configuration, support effort
⁃ Much slower than ldiskfs for high-IOPS usage
⁃ No upgrade path for existing customers

Fujitsu Ext4 DLSnap Patches
+ Previously used in large-scale production
§ File level snapshot, not whole filesystem level
§ Allows upgrade path for Fujitsu customers
⁃ Very old Lustre/kernel versions used without update
⁃ Major effort needed to update to new Lustre/ext4
⁃ Need to process every file when creating snapshot
⁃ N copies of each inode for N snapshots (=slow, large)
⁃ Issues with code complexity and Lustre interaction
⁃ Incompatible with ext4, upstream unlikely to accept

Ext4 Snapshot (CTerra) patches
+ Whole-filesystem snapshots
+ Available e2fsck/e2fsprogs patches
+ Reserved fields in upstream ext4
+ Upgrade path for existing DDN customers
+ Lots of developer experience with ldiskfs
+ Efficient space usage for multiple snapshots
§ Some production usage at CTerra
§ Newer kernel/e2fsprogs vs. DLSnap
⁃ Needs development to work for newer ldiskfs
⁃ Unproven with Lustre and large filesystems

Overall Snapshot Architecture

• Snapshot is created within ldiskfs for each MDT and OST

• Same "lctl snapshot" and lsnapshot commands as ZFS
• Added additional status commands, snapshot space usage

• Appears as a virtual ldiskfs/lustre filesystem image
• Can mount image with either ldiskfs or osd-ldiskfs

• Snapshots strictly read-only after creation
• Snapshot filesystem name modified while snapshot is created
• Small changes needed to allow read-only ldiskfs filesystem mount
• Lustre clients must read-only mount snapshot

• Remove snapshots without modifying main filesystem

MDS OSS

M
D

T
1

a

M
D

T
2

b

O
S

T
2

b

O
S

T
1
a

Client /mnt/lfs

/mnt/lfs-snap_2b

/mnt/lfs-snap_1a

• Each snapshot is a sparse image file (inode) stored inside ldiskfs filesystem
• Image file exported via kernel loopback driver to userspace
• Snapshot inode looks like full copy of filesystem at time of creation

• Must handle ldiskfs filesystems much larger than normal 16TB file limit
• Snapshot inodes are very sparse and have randomly-allocated blocks
• New 64-bit 5-level indirect block format ("5ind") only used for large snapshot inodes
• Could update/replace 5ind format by making new snapshots, if needed

• Mostly standalone patches applied via ldiskfs series during build
• 10kLOC patch for snapshots, 5kLOC patch for large inode format

Internal ldiskfs Snapshot Implementation

snap 1a Snap 2bsnap 2bMain Filesystem

snap 1a image Snap 2b

Snap 2bsnap 2b image Snap 2b

ldiskfs Snapshot Creation and Update

• Create sparse inode with size of main filesystem
• Copy of superblock and core filesystem metadata

• Metadata (inode, dir, bitmap) copy on write (COW) to snapshot inode
• Copy from physical block to logical block in snapshot inode on first change

• File data (allocated blocks) moved on write (MOW) to snapshot inode
• All file data writes already overwrite whole block today

• Copy-on-write done by Lustre client and/or ldiskfs local mount
• Avoids data copy overhead/fragmentation for majority of large writes
• Avoids multiple copy operations when multiple snapshots

• Do not process blocks belonging to snapshots when modified

• Reads of sparse holes fall through to previous snapshot or physical block

• Oldest snapshot removal is (mostly) deleting the snapshot inode

• Intermediate snapshot removal moves blocks to next older snapshot

Main Filesystem

snap 2b image reads

snap 1a image

Main Filesystem

snap 2b image

snap 1a image

COW/MOW

Test System
• SFA18KX with 32 x 540TB OSTs (8 OST/OSS), 4x NVMe MDTs (1 MDT/MDS)
• 50% of main filesystem filled up at start (inodes/capacity)
• 8 worker nodes (1 x 80-core ARM CPU, 512GB Memory, 100Gbps RoCE)

Workloads
• W1: 320 x mdtest jobs (ppn=1, random create order, 5K, 17K, 66K, 133KB file size)
• W2: 320 x IOR jobs (ppn=1, random write/read, 50GB files)
• W3: Delete random files including pre-created files

Test Cases
• Endless repeat workloads W1, W2, W3
• Take new snapshot every hour up to 14 snapshots
• Mount oldest snapshot, check and destroy
• Stop system in middle of tests, run e2fsck on OSTs/MDTs to verify consistency

Detailed Test Workloads

Current Snapshot Status
• Originally developed and tested on el7.9 3.10 kernel

• Patches +11kLOC for snapshots, +5kLOC for 5ind file format

• Core Lustre changes mostly isolated to utils and osd-ldiskfs
• +1.6kLOC for lustre/osd-ldiskfs (loopback setup, credits, management)
• +2.4kLOC for lustre/utils (zfs/ldiskfs separation, status reporting)

• Performs well on NVMe OSTs/MDTs
• High IOPS storage handles COW/MOW/read IOPS easily, relatively smaller devices

• Slower performance on very large HDD OSTs
• Originally took over 30 minutes to create/mount/remove "full" snapshot, now tens of seconds
• Needed additional create/access/remove space/performance optimizations
• Will no longer prellocate all group descriptors at snapshot creation

• e2fsprogs with e2fsck to handle snapshots and 5ind file format
• Delete all snapshots with "e2fsck -x" (clears snapshot inodes, all blocks reclaimed)
• Can run e2fsck on snapshot image to verify correctness, no snapshot repair today

• Working on port to el8.6 4.18 kernel

Thank You
Andreas Dilger
adilger@ddn.com

0

50

100

150

200

250

300

350

400

4K 8K 16K 32K 64K 128K

IO
PS

 (K
op

s/
se

c)

IOPS (4KB-128KB Random Read)

ZFS-RS128K
ZFS-RS4K
ldiskfs

Benchmark ldiskfs and ZFS on NVMe - IOPS
• AI200 (24x NVMe), ldiskfs ZFS 0.8.1, Lustre 2.13

zfs set recordsize=4K scratch5/ost0

• 4KB recordsize vs. 128KB faster ZFS IOPS but…
• recordsize is only tunable per filesystem today
• Must set file recordsize before first file write
• Small recordsize causes slow write performance

• ldiskfs is still much better for flash IOPS than ZFS
• ZFS must still read whole block to verify checksums
• IOPS limited by CPUs power within VM
• Even for NVMe OST size is getting larger
• IOPS gap large, need to compensate with hardware

• Need 2-15x more storage to match ldiskfs performance

ZFS-RS4K
ZFS-RS128K
ldiskfs

Small recordsize helps small random IO somewhat, but still a large gap vs. ldiskfs

Benchmark ldiskfs and ZFS on SFA HDD - Bandwidth

• Setup SFA7990 and installed both ldiskfs and ZFS 0.8.1 with Lustre 2.13
zfs set recordsize=16M scratch7/ost0 (changed 16MB record size from default 1MB)

0

2000

4000

6000

8000

10000

12000

14000

Seq-1MB Random-1MB Random-16MB

Ba
nd

w
id

th
 (M

B/
se

c)

IOR (FPP, 1MB, Write)

ldiskfs zfs zfs-16mRS

0

2000

4000

6000

8000

10000

12000

14000

Seq-1MB Random-1MB Random-16MB
Ba

nd
w

id
th

 (M
B/

se
c)

IOR (FPP, 1MB, Read)

ldiskfs zfs zfs-16mRS

75%
slower

Only 16MB
IO speedup

Large recordsize hurts many IO patterns, hard to improve ZFS performance

