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Snapshot Options Evaluated

ZFS Integrated Snapshots
+ ZFS also allows compression, checksum, dedupe
+ Works well today, reduced core development effort
⁃ Major changes to EXA configuration, support effort
⁃ Much slower than ldiskfs for high-IOPS usage
⁃ No upgrade path for existing customers

Fujitsu Ext4 DLSnap Patches
+ Previously used in large-scale production
§ File level snapshot, not whole filesystem level
§ Allows upgrade path for Fujitsu customers
⁃ Very old Lustre/kernel versions used without update
⁃ Major effort needed to update to new Lustre/ext4
⁃ Need to process every file when creating snapshot
⁃ N copies of each inode for N snapshots (=slow, large)
⁃ Issues with code complexity and Lustre interaction
⁃ Incompatible with ext4, upstream unlikely to accept

Ext4 Snapshot (CTerra) patches
+ Whole-filesystem snapshots
+ Available e2fsck/e2fsprogs patches
+ Reserved fields in upstream ext4
+ Upgrade path for existing DDN customers
+ Lots of developer experience with ldiskfs
+ Efficient space usage for multiple snapshots
§ Some production usage at CTerra
§ Newer kernel/e2fsprogs vs. DLSnap
⁃ Needs development to work for newer ldiskfs
⁃ Unproven with Lustre and large filesystems



Overall Snapshot Architecture

• Snapshot is created within ldiskfs for each MDT and OST

• Same "lctl snapshot" and lsnapshot commands as ZFS
• Added additional status commands, snapshot space usage

• Appears as a virtual ldiskfs/lustre filesystem image
• Can mount image with either ldiskfs or osd-ldiskfs

• Snapshots strictly read-only after creation
• Snapshot filesystem name modified while snapshot is created
• Small changes needed to allow read-only ldiskfs filesystem mount
• Lustre clients must read-only mount snapshot

• Remove snapshots without modifying main filesystem
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• Each snapshot is a sparse image file (inode) stored inside ldiskfs filesystem
• Image file exported via kernel loopback driver to userspace
• Snapshot inode looks like full copy of filesystem at time of creation

• Must handle ldiskfs filesystems much larger than normal 16TB file limit
• Snapshot inodes are very sparse and have randomly-allocated blocks
• New 64-bit 5-level indirect block format ("5ind") only used for large snapshot inodes
• Could update/replace 5ind format by making new snapshots, if needed

• Mostly standalone patches applied via ldiskfs series during build
• 10kLOC patch for snapshots, 5kLOC patch for large inode format

Internal ldiskfs Snapshot Implementation
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ldiskfs Snapshot Creation and Update

• Create sparse inode with size of main filesystem
• Copy of superblock and core filesystem metadata

• Metadata (inode, dir, bitmap) copy on write (COW) to snapshot inode
• Copy from physical block to logical block in snapshot inode on first change

• File data (allocated blocks) moved on write (MOW) to snapshot inode
• All file data writes already overwrite whole block today

• Copy-on-write done by Lustre client and/or ldiskfs local mount
• Avoids data copy overhead/fragmentation for majority of large writes
• Avoids multiple copy operations when multiple snapshots

• Do not process blocks belonging to snapshots when modified

• Reads of sparse holes fall through to previous snapshot or physical block

• Oldest snapshot removal is (mostly) deleting the snapshot inode

• Intermediate snapshot removal moves blocks to next older snapshot

Main Filesystem
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Test System
• SFA18KX with 32 x 540TB OSTs (8 OST/OSS), 4x NVMe MDTs (1 MDT/MDS)
• 50% of main filesystem filled up at start (inodes/capacity)
• 8 worker nodes (1 x  80-core ARM CPU, 512GB Memory, 100Gbps RoCE)

Workloads
• W1: 320 x mdtest jobs (ppn=1, random create order, 5K, 17K, 66K, 133KB file size)
• W2: 320 x IOR jobs (ppn=1, random write/read, 50GB files)
• W3: Delete random files including pre-created files

Test Cases
• Endless repeat workloads W1, W2, W3
• Take new snapshot every hour up to 14 snapshots
• Mount oldest snapshot, check and destroy
• Stop system in middle of tests, run e2fsck on OSTs/MDTs to verify consistency

Detailed Test Workloads



Current Snapshot Status
• Originally developed and tested on el7.9 3.10 kernel

• Patches +11kLOC for snapshots, +5kLOC for 5ind file format

• Core Lustre changes mostly isolated to utils and osd-ldiskfs
• +1.6kLOC for lustre/osd-ldiskfs (loopback  setup, credits, management)
• +2.4kLOC for lustre/utils (zfs/ldiskfs separation, status reporting)

• Performs well on NVMe OSTs/MDTs
• High IOPS storage handles COW/MOW/read IOPS easily, relatively smaller devices

• Slower performance on very large HDD OSTs
• Originally took over 30 minutes to create/mount/remove "full" snapshot, now tens of seconds
• Needed additional create/access/remove space/performance optimizations
• Will no longer prellocate all group descriptors at snapshot creation

• e2fsprogs with e2fsck to handle snapshots and 5ind file format
• Delete all snapshots with "e2fsck -x" (clears snapshot inodes, all blocks reclaimed)
• Can run e2fsck on snapshot image to verify correctness, no snapshot repair today

• Working on port to el8.6 4.18 kernel



Thank You
Andreas Dilger
adilger@ddn.com
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Benchmark ldiskfs and ZFS on NVMe - IOPS
• AI200 (24x NVMe), ldiskfs ZFS 0.8.1, Lustre 2.13

# zfs set recordsize=4K scratch5/ost0 

• 4KB recordsize vs. 128KB faster ZFS IOPS but…
• recordsize is only tunable per filesystem today
• Must set file recordsize before first file write
• Small recordsize causes slow write performance

• ldiskfs is still much better for flash IOPS than ZFS
• ZFS must still read whole block to verify checksums
• IOPS limited by CPUs power within VM
• Even for NVMe OST size is getting larger
• IOPS gap large, need to compensate with hardware

• Need 2-15x more storage to match ldiskfs performance

ZFS-RS4K
ZFS-RS128K
ldiskfs

Small recordsize helps small random IO somewhat, but still a large gap vs. ldiskfs



Benchmark ldiskfs and ZFS on SFA HDD - Bandwidth

• Setup SFA7990 and installed both ldiskfs and ZFS 0.8.1 with Lustre 2.13
# zfs set recordsize=16M scratch7/ost0 (changed 16MB record size from default 1MB) 
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Large recordsize hurts many IO patterns,  hard to improve ZFS performance




