
ZFS Improvements for HPC
Johann Lombardi

High Performance Data Division



ZFS backend fully supported since 2.4.0

 Basic support for ZFS-based OST introduced in 2.3.0

 ORION project funded by LLNL

 Network protocol independent of backing file system

 New Object Storage Device (OSD) module integrated with 
ZFS Data Management Unit (DMU)

 lfsck support introduced in 2.6.0

2

Lustre*: ZFS Support

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



3

ZFS I/O Stack

ZIL
ZFS Intent Log

DMU
Data Management Unit

ZAP
ZFS Attribute Processor

ZPL
ZFS POSIX Layer

LUSTRE ZVOL
ZFS Emulated Volume

ARC
Adaptive Replacement Cache

ZIO
ZFS I/O Pipeline

VDEV
Virtual Devices

SPA



DMU – Data Management Unit

 General-purpose transactional object store

 dnode defines objects

 object set is a collection of objects

 transaction is a series of operations that must be committed 
to disk as a group, all or nothing.

 Built atop flat address space (SPA)

4

Data Management Unit ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



All objects of a Lustre target are stored in a single DMU objset

 Each Lustre FID is assigned a dnode in the objset

 On-disk format compatible with ZFS Posix Layer (ZPL)

 Lustre targets can be mounted as ZFS file systems on Linux

 User/group dnode accounting not supported by ZFS

 Currently done in zfs-osd (improvements in LU-2600)

 Patch provided to ZFS community to handle user/group 
dnode quota in ZFS (LU-2435)

 System Attributes 

 Lustre relies heavily on extended attributes (xattrs)

 store Lustre xattrs with dnode for better performance
5

Lustre* & DMU

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



ZAP – ZFS Attribute Processor

 Hash table storing {key, value} associations within an object

 microZAP: single block, simple attributes (64-bit number) and 
limited key length (50 bytes)

 fatZAP: large number of entries and long keys/values

 Used by ZFS Posix Layer (ZPL) for:

 Directories

 ZFS attributes

 User/Group space accounting & quota

6

ZFS Attribute Processor ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



ZAP used for all Lustre index files

 Lustre directories

 Quota index files

 Object index (OI)

 Lustre FID / dnode association

 Fast OI insert/lookup/delete is required for good metadata 
performance

 Hash function to distribute values uniformly across buckets

 Increase indirect and leaf block size from 4K to 16K

 Improved create/destroy rate with mds-survey by ~10% 
(LU-5391)

7

Lustre* & ZAP

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



ZIL – ZFS Intent Log

 Copy-on-write is efficient for long running transactions, but not 
for short transactions

 Metadata overhead too high

 ZIL is a per-dataset transaction log for synchronous data

 Synchronous data quickly flushed to this special log w/o 
expensive transaction group commit

 ZIL log replayed only in case of crash

 No data copy for writes larger than 64KB

 ZIL can be stored on a separate device

8

ZFS Intent Log ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



 Lustre does not take advantage of the ZIL yet

 Synchronous I/O is a performance killer
– O_DIRECT, O_DSYNC, fsync(3C)

 Some Lustre internal mechanisms might also trigger fsync()
– e.g. Commit On Share (COS), sync_on_lock_cancel

 ZIL replay after crash could break Lustre transno ordering

 Work to support ZIL in ZFS-OSD under discussion in LU-4009

9

Lustre* & ZIL

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



ARC – Adaptive Replacement Cache

 Central point of memory management caching data from all 
active storage pools

 Replacement for the Linux page cache

 Self-tuning cache adjusted based on I/O workload

 Active OI ZAP blocks should be cached as much as possible to 
avoid repeated I/Os

 LU cache interaction (LU-5164)

 FID prefetching (LU-5041)

10

Adaptive Replacement Cache ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



 Supported maximum block size of 128KB

 Impact traditional HPC workload of large I/Os

 Random 1MB reads from rotating disks has higher 
bandwidth than random 128KB reads

 read-modify-write required when running over a RAID array 
with a stripe width larger than 128KB

 Resilvering/scrubbing would benefit from a larger block size

 Draft patch to support 1MB block size available for testing

 https://github.com/zfsonlinux/zfs/issues/354

11

Increase Block Size to 1MB+



 ZFSonLinux (ZoL) comes with DKMS packages

 Recompile ZFS modules automatically against current kernel 
and further upgrade

 Lustre* now also supports DKMS

 Lustre server modules automatically rebuilt when ZFS 
modules or kernel are upgraded

 LU-1032

12

DKMS Packaging

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



 Multiple Mount Protection (MMP)

 Large dnode support

 Persistent L2ARC across reboot

 RAIDZ/RAIDZ2 improvements

13

Other Future Enhancements



VOSD – Versioning OSD

 Developed for the Fast Forward project

 Lowest layer of the exascale storage stack

 Extensions to the ZFS OSD

 Multiple active datasets to be accessible through an OST

 Use ZFS snapshot capability to freeze a dataset “version”

 Implement Version Intent Logging (VIL) to log I/O operations 
for future versions
– Versions are integrations and snapshotted in order

– VIL was developed as a ZIL extension

– VIL patch available here: 
http://git.whamcloud.com/ff/daos_lustre.git/blob/HEAD:/contrib/patches/daos
_zfs/zfs-0.6.1_daos.patch

14

Versioning OSD
I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K
e

rn
e

l

VOSD

ToolsQuery




