
ZFS Improvements for HPC
Johann Lombardi

High Performance Data Division



ZFS backend fully supported since 2.4.0

 Basic support for ZFS-based OST introduced in 2.3.0

 ORION project funded by LLNL

 Network protocol independent of backing file system

 New Object Storage Device (OSD) module integrated with 
ZFS Data Management Unit (DMU)

 lfsck support introduced in 2.6.0

2

Lustre*: ZFS Support

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



3

ZFS I/O Stack

ZIL
ZFS Intent Log

DMU
Data Management Unit

ZAP
ZFS Attribute Processor

ZPL
ZFS POSIX Layer

LUSTRE ZVOL
ZFS Emulated Volume

ARC
Adaptive Replacement Cache

ZIO
ZFS I/O Pipeline

VDEV
Virtual Devices

SPA



DMU – Data Management Unit

 General-purpose transactional object store

 dnode defines objects

 object set is a collection of objects

 transaction is a series of operations that must be committed 
to disk as a group, all or nothing.

 Built atop flat address space (SPA)

4

Data Management Unit ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



All objects of a Lustre target are stored in a single DMU objset

 Each Lustre FID is assigned a dnode in the objset

 On-disk format compatible with ZFS Posix Layer (ZPL)

 Lustre targets can be mounted as ZFS file systems on Linux

 User/group dnode accounting not supported by ZFS

 Currently done in zfs-osd (improvements in LU-2600)

 Patch provided to ZFS community to handle user/group 
dnode quota in ZFS (LU-2435)

 System Attributes 

 Lustre relies heavily on extended attributes (xattrs)

 store Lustre xattrs with dnode for better performance
5

Lustre* & DMU

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



ZAP – ZFS Attribute Processor

 Hash table storing {key, value} associations within an object

 microZAP: single block, simple attributes (64-bit number) and 
limited key length (50 bytes)

 fatZAP: large number of entries and long keys/values

 Used by ZFS Posix Layer (ZPL) for:

 Directories

 ZFS attributes

 User/Group space accounting & quota

6

ZFS Attribute Processor ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



ZAP used for all Lustre index files

 Lustre directories

 Quota index files

 Object index (OI)

 Lustre FID / dnode association

 Fast OI insert/lookup/delete is required for good metadata 
performance

 Hash function to distribute values uniformly across buckets

 Increase indirect and leaf block size from 4K to 16K

 Improved create/destroy rate with mds-survey by ~10% 
(LU-5391)

7

Lustre* & ZAP

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



ZIL – ZFS Intent Log

 Copy-on-write is efficient for long running transactions, but not 
for short transactions

 Metadata overhead too high

 ZIL is a per-dataset transaction log for synchronous data

 Synchronous data quickly flushed to this special log w/o 
expensive transaction group commit

 ZIL log replayed only in case of crash

 No data copy for writes larger than 64KB

 ZIL can be stored on a separate device

8

ZFS Intent Log ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



 Lustre does not take advantage of the ZIL yet

 Synchronous I/O is a performance killer
– O_DIRECT, O_DSYNC, fsync(3C)

 Some Lustre internal mechanisms might also trigger fsync()
– e.g. Commit On Share (COS), sync_on_lock_cancel

 ZIL replay after crash could break Lustre transno ordering

 Work to support ZIL in ZFS-OSD under discussion in LU-4009

9

Lustre* & ZIL

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



ARC – Adaptive Replacement Cache

 Central point of memory management caching data from all 
active storage pools

 Replacement for the Linux page cache

 Self-tuning cache adjusted based on I/O workload

 Active OI ZAP blocks should be cached as much as possible to 
avoid repeated I/Os

 LU cache interaction (LU-5164)

 FID prefetching (LU-5041)

10

Adaptive Replacement Cache ZIL

DMU

ZAP

ZPL LUSTRE ZVOL

ARC

ZIO

VDEV

SPA



 Supported maximum block size of 128KB

 Impact traditional HPC workload of large I/Os

 Random 1MB reads from rotating disks has higher 
bandwidth than random 128KB reads

 read-modify-write required when running over a RAID array 
with a stripe width larger than 128KB

 Resilvering/scrubbing would benefit from a larger block size

 Draft patch to support 1MB block size available for testing

 https://github.com/zfsonlinux/zfs/issues/354

11

Increase Block Size to 1MB+



 ZFSonLinux (ZoL) comes with DKMS packages

 Recompile ZFS modules automatically against current kernel 
and further upgrade

 Lustre* now also supports DKMS

 Lustre server modules automatically rebuilt when ZFS 
modules or kernel are upgraded

 LU-1032

12

DKMS Packaging

Intel® High Performance Data Division

* Other names and brands may be claimed as the property of others.



 Multiple Mount Protection (MMP)

 Large dnode support

 Persistent L2ARC across reboot

 RAIDZ/RAIDZ2 improvements

13

Other Future Enhancements



VOSD – Versioning OSD

 Developed for the Fast Forward project

 Lowest layer of the exascale storage stack

 Extensions to the ZFS OSD

 Multiple active datasets to be accessible through an OST

 Use ZFS snapshot capability to freeze a dataset “version”

 Implement Version Intent Logging (VIL) to log I/O operations 
for future versions
– Versions are integrations and snapshotted in order

– VIL was developed as a ZIL extension

– VIL patch available here: 
http://git.whamcloud.com/ff/daos_lustre.git/blob/HEAD:/contrib/patches/daos
_zfs/zfs-0.6.1_daos.patch

14

Versioning OSD
I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K
e

rn
e

l

VOSD

ToolsQuery




