DE LA RECHERCHE A L'INDUSTRIE

CLa

www.cea.fr

EXPORTING LUSTRE WITH
NFS-GANESHA

Philippe Deniel, Dominique Martinet
(philippe.deniel@cea.fr , dominique.martinet@cea.fr)

LAD2013 September 16-17, 2013

mailto:philippe.deniel@cea.fr
mailto:dominique.martinet@cea.fr

C2A WHAT IS NFS-GANESHA

NFS-Ganesha was born at
CEA/DAM in 2005

B Original need was to export HPSS over NFS
= |IBM stopped supporting this feature
= | he hpss nfs daemon was really
unreliable and with poor caching
capabilities
B We designed something of our own in 4Q2004
= \We start coding in January 2005, once a
design document had been written
= Ganesha was designed with more than
HPSS in mind

NFS-Ganesha is in production
since early 2006
B First used to export HPSS to TERALO system
B Used to export LUSTRE at TGCC in 2011, in
front of CCRT’s compute machines

LAD2013 CEA | September, 16-17, 2013

FEATURES

NFS-Ganesha has known many evolutions. Currently it

Includes the following feature (non-exhaustive list)

B Supported protocols
= NFSv3 and ancillary protocols (MOUNTDv3, NLMv4, client side of NSM)
- NLMv4 implementation supports SHARE/UNSHARE used by Microsoft
NFS client
= NFSVv4.0 (including lock support)
= NFSv4.1 (including pNFS support)
= 9p.2000L (with TCP and RDMA transport layers)
B Supported backends (known as FSAL : File System Abstraction Layer) are
= CEPH
= GPFS
= HPSS
= PROXY (operates as a NFSv4 client to turn Ganesha into a NFS PROXY)
= LUSTRE 2.x
= ZFS (content of a ZFS tank)
= VFS (with kernel > 2.6.39. Makes it possible to export every FS managed by
the kernel's VFS)

LAD2013 CEA | September, 16-17, 2013

ce_a GANESHA’S ARCHITECTURE

LAD2013

clients requests

Network Forechannel

SNMP via AgentX (optional)

Stats

GSSAPI

) Network
RPC Dispatcher threads
P Backchannel
Dup Req Layer RPCSEC_GSS
MOUNTV3
NLMv4, RQUOTA NFS V3 NFSv4.x/pNFS 9P (TCP and RDMA)

Logging

Admin

Cache fs operations

Cache fs callbacks

File Content layer

Cache Inode

SAL

Cache Inode UP

fs operations

1

fs callbacks

1

File System Abstraction Layer

FSAL UP

Backend (POSIX, XFS, ZFS, PROXY,
GPFS, SNMP, CEPH, HPSS, LUSTRE, VFS)

Hash Tables

CEA | September, 16-17, 2013

NFS-GANESHA COMMUNITY

NFS-Ganesha was released as free software on
July 4t 2007

Available on https://qgithub.com/nfs-ganesha/nfs-ganesha/
NFS-Ganesha is available under the terms of the LGPLv3 license

A Community starts to develop
CEA/DAM is still active in the development
= Manage FSAL HPSS, FSAL PROXY and FSAL LUSTRE, 9P and
RDMA based transport
IBM became an active member of the community in late 2009
== Ganesha is to be integrated in SONAS as NFS Gateway
== |IBM is In charge of FSAL GPFS and SAL (states management layer)
LinuxBox (a small company created by former CITI folks) joined the community
In september 2010
== 1 Ney are very active on NFSv4.1 with focus on CEPH
Panasas joined the community in May 2011
= Ganesha is to be used as NFSv4.1/pNFS MDS in Panasas Product

LAD2013 CEA | September, 16-17, 2013

https://github.com/nfs-ganesha/nfs-ganesha/
https://github.com/nfs-ganesha/nfs-ganesha/
https://github.com/nfs-ganesha/nfs-ganesha/
https://github.com/nfs-ganesha/nfs-ganesha/
https://github.com/nfs-ganesha/nfs-ganesha/

C2A MORE FOCUS NEFS-GANESHA LUSTRE

FSAL LUSTRE provides access to LUSTRE for
NFS-Ganesha daemon

B FSALs are provided as a dynamic library to be dlopen-ed at startup by
ganesha.nfsd daemon (in Ganesha 2.0)

B Basedonafew LUSTRE features
= Uses “.lustre/fid” special directory to access objects
== Calls from liblustreapi
- Fid2path
- path2fid

B Provides access to xattr
== Native feature in 9p2000.L and NFSv4.x
== Makes use of “ghost directories” in NFSv3 and NFSv4 (Linux has no
NFSv4 client support for extended attributes as Solaris does)

LAD2013 CEA | September, 16-17, 2013

MORE FOCUS NFS-GANESHA LUSTRE

Future cool features for LUSTRE

B pNFS support (using file based layout) for FSAL_LUSTRE
== Main discussion is about placing pNFS Data Servers correctly
== |t Seems logical to place them closer as possible to OSSs, or even running on
OSSs
- The latest choice would make the translation from LUSTRE layout to pNFS
layout easier
== Memory pressure should be considered
- PNFS/DS are rather stateless creatures (the states are managed by the
PNFS/MDS)
- Ganesha as pNFS/DS would be redesigned with reduced caches

B Use LUSTRE changelogs to implement “FSAL upcalls” (as GPFS does) to update
caches as LUSTRE changes
== Upcalls are trapped by a pool of Ganesha’s threads
- Related cached inode is removed from the cache
== \Would make NFS-Ganesha caches coherent with LUSTRE
- Would make Ganesha fully compliant with NFSv4.1 (as RFC5661 says)
== \Vould help in clustering NFS-Ganesha server on top of LUSTRE

LAD2013 CEA | September, 16-17, 2013

BENCH: HARDWARE AND SOFTWARE USED

Details of benchmark configuration

B Hardware
== Clients are BULL B500 nodes
- 4 sockets, Nehalem processors (8 cores)
- 64 GB RAM
== LUStre MDS and OSS
- Bull MESCA S6030 nodes, 4 sockets Nehalem (8 cores) , 64 GB RAM
== Network is Mellanox QDR Infiniband

B Software
== LUStre 2.1.4 sur BULL AE2.2 (based of EL6.1)
== Clients are running BULL AE2.2
== Ganesha pre-2.0-dev_42-40-gd3b8c25 (yes, that’s a “git describe —long” ;-))
with mooshika-0.3.7-gb3e264a

LAD2013 CEA | September, 16-17, 2013

DE LA RECHERCHE A LINDUSTRIE

5000
4000

3 3000

[0}

©

2 2000
1000

3500
3000
2500
2
= 2000
>
o
5 1500
1000
500
0

LAD2013

»'
/

0

BENCH : GANESHA VS KNFSD (METADATA 1/3)

RESULTS OF MDTEST: directory create/stats/rm

inode/s by number of clients

=l knfsd/tcp
== gshv3/tcp
gsh9p/rdma

20 40 60 80

#clients

Unlink/s by number of clients

=—-knfsd/tcp
=0=gshv3/tcp
gsh9p/rdma

20 40 60 80
#clients

MDTEST: stats/s by number of clients

50000
40000
¥ 30000
2 =@ knfsd/tcp
% 20000
‘ =0=gshv3/tcp
10000 Y
M o gsh9p/rdma
0
0 20 40 60 80

#clients

Knfsd is better than Ganesha on
Directory metadata management,
Especially on stats (possible cache
effect)

CEA | September, 16-17, 2013

BENCH : GANESHA VS KNFSD (METADATA 2/3)

RESULTS OF MDTEST: files create/stats/rm

Inode/s by number of clients

7000

6000
,, 5000
§ 4000 —8—knfsditc
g 3000 P
= 2000 =0=gshv3/tcp

1000 « gsh9p/rdma

0 20 40 60 80
#clients

Unlink/s by number of clients
6000
5000
4000 W\.

£3000 - S——

= e —
2000

1000

== knfsd/tcp
== qshv3/tcp
gsh9p/rdma

0 20 40 60 80
#clients

LAD2013

Stats/s by number of clients

50000
40000
% 30000
= == knfsd/tcp
% 20000
J‘ =0=gshv3/tcp
10000 =¢
| gsh9p/rdma
0
0 20 40 60 80

#clients

Knfsd is better than Ganesha on
File metadata management,
too

CEA | September, 16-17, 2013

DE LA RECHERCHE A LINDUSTRIE

Tree removed/s

BENCH : GANESHA VS KNFSD (METADATA 2/3)

RESULTS OF MDTEST: files create/stats/rm

Tree created/s by number of clients

600

500

N
o
o

R
e]
3
&
2 300
3
® 200
'_
100 =)
0 T
0 20 40 60 80

#client

Knfsd and Ganesha have similar
—m—knfsd/tcp performances on tree operations

== gshv3/tcp

SIS Ganesha becomes slightly better as

the number of client increases

Tree removed/s by number of client

400
350
300
250

200 \\

150 \

100 \ .

50 _\\—\\«
\i

#clients
LAD2013

== knfsd/tcp 495,294
== qshv3/tcp 327,262
gsh9p/rdma 313,297

CEA | September, 16-17, 2013

BENCH : GANESHA VS KNFSD (DD READ)

single client reads with dd

=—| ustre natif (read)
=¢=—Ganesha v3/tcp (read)
—&—knfsd v3/tcp (read)

MB/s
)
o o
o o

»

200
0
0 5 10 15 20 25 30 35
Size (GB)
Single client reads with dd
700
600 ———
500
400
300 == Ganesha v3/tcp (read)
200 =¢—knfsd v3/tcp (read)
w
I 100
=3
5 0
£ 0 5 10 15 20 25 30 35
3 .
2 Size (GB)
'_

—
>
O
N
o
=
w

CEA | September, 16-17, 2013

MB/s

ghput (MB/s)

Threu

700
600
500
400
300
200
100

600
500
400
300
200
100

AD2013

single client writes with dd

e

+ ﬂ
15 20 25 30
Size (GB)
single client writes via dd

—t
®
15 20 25 30
Size (GB)

35

35

== Lustre natif (write)
== Ganesha v3/tcp (write)
== knfsd v3/tcp (write)

=¢==Ganesha v3/tcp (write)
—&—knfsd v3/tcp (write)

CEA | September, 16-17, 2013

BENCH : GANESHA VS KNFSD (IOR READ)

200000

150000

100000

50000

MB/s

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

MB/s

LAD2013

0

Multiple clients read via IOR

0 15

#clients

20

25

30

Read via IOR on several clients

15

#clients

20

25

30

35

35

== Lustre natif (read)
=¢=-Ganesha v3/tcp (read)
-4 knfsd v3/tcp (read)

== Ganesha v3/tcp (read)
=—4—knfsd v3/tcp (read)

CEA | September, 16-17, 2013

MB/s

MB/s

6000
5000
4000
3000
2000
1000

2500
2000
1500
1000

500

LAD2013

BENCH : GANESHA VS KNFSD (IOR WRITE)

Multiple clients write with IOR

—

15

#clients

20

25

i

30

Write via IOR on several clients

- m
4’

15

#clients

20

25

30

== Lustre natif (write)
== (Ganesha v3/tcp (write)
== knfsd v3/tcp (write)

35

== Ganesha v3/tcp (write)
=—&— knfsd v3/tcp (write)

35

CEA | September, 16-17, 2013

COMMENTS ABOUT 10 BENCHMARKS

Ganesha and knfsd have similar single client

performances

B Knfsd is faster on write (about 7% better)
B Ganeshais faster on read (about 3% better)
.Read operations are strongly impacted by
== LUStre’s caches
= NFS client caches

Ganesha is interesting in clustered environment
B Ganesha’s performances are about 30% better than knfsd when multiple
clients do write operations on the same server
B Read operations suffer from by huge cache effects

== Both Ganesha and knfsd behave the same way

LAD2013 CEA | September, 16-17, 2013

COMMENTS ABOUT METADATA BENCHMARKS

Ganesha accesses objects “by fid”

B NFS file handles carries the lustre FID for the related object
= Ganesha builds the related path in /mountpoint/.lustre
= Ganesha then uses this “fid path” to access the object

B The knfsd is in the kernel space but Ganesha is in user space.
== INformation is to be moved from kernel space to Ganesha

B Lustre seems to behave differently as object are accessed by path or by FID
== ANy comment in the room ? Feedback is wanted on this point.

B Both Ganesha and knfsd run on a single client
== 1 heir performances will never exceed those of a single client
== Using pNFS will break this bottleneck

B Asingle client in Lustre 2.1 suffers from “single shared file” issue as multiple
access are done to a single file with direct impact to NFS performances
= See LU1666, LU1669, LU2481 (mostly fixed in 2.1.5)

LAD2013 CEA | September, 16-17, 2013

FEEDBACK FROM PRODUCTION CASES

Ganesha is used in production at CEA

B Ganesha exports HPSS namespace (metadata only) on TERA and TGCC

B Ganesha exports LUSTRE (full rw access) on TGCC
== Part of the compute machine used an obsolete kernel (no LUSTRE)
= NFSv3 was used as a fallback
= Ganesha was providing NFS shares in RW
= \We know Ganesha can be used in HPC environment : we did use it

B What about crashes ?
= Ganesha resides in the user space
= NFSV3 is a stateless protocol
= NFSv4.x has client recovery features
== |f the daemon crashes... just restart it and continue working

B Big issue related to knfsd
= Depending on some access patterns, knfsd could generate Ibugs
= If knfsd crashes, it crashes the whole node and you need to reboot

LAD2013 CEA | September, 16-17, 2013

AS A CONCLUSION

B Ganesha’s development is continuing
= More NFSv4.x feature including more acl support and delegation
support
== More pNFS for LUSTRE
= LUSTRE changelogs to implement Upcalls for FSAL LUSTRE
= Support for NFS/RDMA
- Ganesha already have RDMA support for 9p2000.L

B Ganesha s stable enough to be used in production
B Ganesha keeps good performances against many clients

B User Space is a nice place
== Easy access to many services (kerberos, idmapper, dns, ...)
= Make it easy to build a sandbox
= It's easier to update a daemon than a kernel element

B Security
= Ganesha has efficient NFS/krb5 support via RPCSEC_GSS
== \We will make Ganesha capable of running as a non-root user
- service will be restricted to NFSv4.x and 9p2000.L

LAD2013 CEA | September, 16-17, 2013

QUESTIONS ?

LAD2013 CEA | September, 16-17, 2013

