
Improving	  Lustre	  Tes1ng	  
Version	  1.0	  

Nathan	  Rutman	  
Chris	  Gearing	  
Roman	  Grigorev	  



Improving the Lustre Test Framework 
LAD, Sep 2012 

Nathan Rutman 
Roman Grigoryev 



Agenda 

● Current Problems 
● Possible Remedies 
● Change Hurts 
● A Plan 
● Xperior 



Current test problems 
● Packaging 

○ Test version tied to Lustre version 
● Language 

○ Bash language is not modular or portable 
○ Test scripts are not coherent 

● Test selection 
○ No test "filters" based on attributes 
○ Many tests can't be run individually 

■ no random testing 
■ no directed testing 

● Coverage 
○ Poor code coverage (66% functions, 44% branches) 
○ Some tests are ineffective, duplicates 



Current test problems, continued 
● Framework has limited abilities to determine test status 

○ universal timeout 
○ crashes stop tests 
○ output is not machine-readable 

● Configuration control is a mess 
○ inconsistent formatting abilities 
○ inconsistent mounting abilities 
○ no/limited control over 

■ deployment 
■ versions 
■ distros 
■ vm's 

● No verification of the t-f itself 



Current test problems, continued 
● Can't test real systems 

○ setup 
○ safety 
○ connectivity 

● No ability to setup, configure, or explicitly test routing 



Possible remedies 

● Better test language 
● Clarify local/remote operations, roles 
● Remote commands via LNET 
● Separate configuration and setup/cleanup from tests 
● Clarify/enforce test independence 
● Remove version dependence 
● Package independence 



How far down the rabbit hole? 

A. Minimally change tests, new framework emulates old 
○ Less effort 
○ No need for test verification 
○ Limited benefits 
○ Difficult interfacing with bash 

B. New framework, wholesale test changes 
○ Tests will have strict, verifiable syntax 
○ Single language 
○ Strict test life cycles 
○ Must develop all functions, port all tests 
○ Must verify test correctness 

C. New framework for new tests, wrapper around old tests 
○ Smooth transition 
○ Must develop all functions 



A Plan 

● Aiming for option C 
● Clarify and enforce the API to framework functions 
● Add API for 

○ filter-by-label 
○ precondition checks - 'skip' shouldn't be a test result 
○ permissions mask 
○ parameter setting 
○ file creation 

● Add test metadata labels (e.g. failover, safe, min_ost_count=2) 
● Test output in YAML form 

○ pass/fail 
○ timing 
○ error codes, line nums 

● Create separate test package 
● Add LNET remote procedure testing upcall (maybe) 



Separate tests 

● Either fully separate or combine interrelated tests 
○ if tests are separate, they must have value when 

executed separately 
● Call error fn at any stage that may fail 

○ report error code and line number 
● Every test restores original state 

○ parameter settings (record/restore) 
○ leftover files 

● Test ordering must be randomizable 
● Test ordering must be repeatable 
● Parallel test execution 



Permission mask 

● Impossible to separate setup from some tests 
● Instead, explicitly grant permissions for tests 

1. small client-based filesystem operations 
2. large (OST fill) client ops 
3. change debugging levels / capture log ouput 
4. set a temporary parameter (set_param) 
5. set a permanent parameter (conf_param) 
6. set obd_fail_loc 
7. register a changelog user 
8. start/stop a client 
9. start/stop a server 

10. failover node to itself 
11. failover a node to partner 
12. format a target as an mdt/ost 

● These are good candidates for an API 



Xperior 

To put to the test 

● Xyratex is developing for test execution 
○ open source when finished 

● Features 
○ Results are in YAML 

■ Also supports TAP and HTML output 
○ Per test configuration (YAML) in separate files 

■ tags, timeouts, etc 
■ config file correctness checker 

○ Test selection lists 
○ Framework unit tests verify framework itself 



Xperior, con't 

● Framework divided into 4 components 
○ management: execution, reporting, filtering 
○ configuration 

● continuous integration (git triggers) 
● plugins: additional execution and behavior modules 

● Currently supports 
○ Lustre tests (ONLY=) 
○ IOR, mdtest 
○ virtual and real machines 



Xperior plugins 

● Plugins 
○ code coverage tool 
○ static verification tool 
○ reformat after every test 
○ store console output 
○ store lustre-diagnostics output 

● Under development 
○ Random order test execution with replay 
○ MDSIM test execution 
○ IPMI support 



Xperior, con't 
Nodes:!

- id! :!mds1!
ip! :!192.168.200.102!
ctrlproto! :!ssh!● Initiated via Jenkins user! :!root!
pass! :!booper!

groupname! : sanity!...!● System config YAML executor! : XTest::Executor:!LustreObjects:!
roles! : StoreSyslog Stor!- id! :!mdt1!
description! : Lustre sanity te!● Set up cluster device! :!/dev/sda1!
reference! : http://wiki.lust!node! :!mds1!
php/Testing_Lustre_Code!type! :!mdt!● Install any required test expected_time! : 10!
timeout! : 300!
cleanup_max_time : -1!packages tags! : functional!
dangerous! : yes!● Test description YAML 
Tests:!

- id! :!0b!● Results YAML - id! :!0c!
- id! :!1a!
- id! :!1b!

cmd: SLOW=YES MDSCOUNT=1 mds1_HOST=mft01 mds_HOST=mft01 OSTCOUNT=2! ost1_HOST=mft01!
ost2_HOST=mft01 CLIENTS=mft01cl RCLIENTS=\"\" ONLY=200d DIR=/mnt/lustre PDSH=\"/usr/bin/pdsh!
ssh -S -w \" /usr/lib64/lustre/tests/sanity.sh 2>! /tmp/test_stderr.316083.log 1>!
/tmp/test_stdout.316083.log!
completed: yes!
dangerous: no!
description: Lustre sanity tests!
endtime: 1331509252!
endtime_planned: 1331509541!
executor: XTest::Executor::LustreTests!
exitcode: 0!
expected_time: 10!
extoptions:!
branch: first!
buildurl: 'http://10.76.49.90:8080/jenkins/job/Luste_testing_2pc_sl61_sl61patchless/.!



What Next 

● We will continue to work on 
○ Xperior 
○ Separating tests 
○ Integrating new features into the current t-f API 

● Need community discussion/help on 
○ Further defining the new framework API 
○ Choosing and porting tests to a new language 
○ Changing old tests to meet the new API 



INTEL CONFIDENTIAL, FOR INTERNAL USE ONLY 17 

Statistical Performance Testing 

Chris Gearing - chris.gearing@intel.com 
Sr. Staff Engineer 



INTEL CONFIDENTIAL 18 
High	  Performance	  Data	  Division	  

Statistical Performance Testing 

 

Analogue testing results 

Existing method for performance testing 

Statistical performance testing 

First steps to statistical performance testing 

Broadening performance testing 

 



INTEL CONFIDENTIAL 19 
High	  Performance	  Data	  Division	  

Problem Statement 

Not all testing is straight pass or fail 

Functional testing generally is 
• Did the file rename correctly 
• Did the data write correctly 
• Has the OSS successfully failed over 

Performance testing generally is not 
• What was the data rate of the writes 
• How quickly did the OSS fail over 
• How many RPC’s did we generate per 

megabyte of data 



INTEL CONFIDENTIAL 20 
High	  Performance	  Data	  Division	  

Performance Testing Today 

Errors are dealt with by 
• Re-running test 

• Changing hardware 

• Making ‘experience based assessments’ 

Reality is results are probability based 
• Humans not good at assessing probability 



INTEL CONFIDENTIAL 21 
High	  Performance	  Data	  Division	  

Simple example of problem 



INTEL CONFIDENTIAL 22 
High	  Performance	  Data	  Division	  

Variation of performance 

We can think of performance variation in 
2 ways 
• Natural causes 

– Are when variability of results are within the 
normal range 

–  The process is under control 

• Assignable causes 
– Are when the variability of results are outside 

the normally expected range 
–  The process is out of control and a change 

has happened that we must be able to assign 
a cause to 



INTEL CONFIDENTIAL 23 
High	  Performance	  Data	  Division	  

Natural Variations 

Natural variations in the test process 

These are to be expected 

Output measures follow a probability 
distribution 

For any distribution there is a measure 
of central tendency and dispersion 

 

 



INTEL CONFIDENTIAL 24 
High	  Performance	  Data	  Division	  

Assignable Variations 

Variations that can be traced to a 
specific reason 
•  Lustre bug 

• Test infrastructure failure 

• System configuration 

• Expected change – bug fix / new feature 

• … 

The objective is to discover when 
assignable causes are present and 
eliminate or explain them 

 



INTEL CONFIDENTIAL 25 
High	  Performance	  Data	  Division	  

Sample Natural Variation 

When only natural 
causes of variation 
are present, the 
output of a process 
forms a distribution 
that is stable over 
time and is 
predictable 

Measurement	  

Fr
eq

ue
nc
y	   Predic1on	  



INTEL CONFIDENTIAL 26 
High	  Performance	  Data	  Division	  

Samples Assignable Variation 

When assignable 
causes are present, 
the process output is 
not stable over time 
and is not predicable 

Measurement	  

Fr
eq

ue
nc
y	  

Predic1on	  

?	  ?	  ?	  
?	  
?	  
?	  ?	  

?	  ?	  ?	  

?	  ?	  
?	  
?	  
?	  ?	  
?	  ?	  ?	  



INTEL CONFIDENTIAL 27 
High	  Performance	  Data	  Division	  

How do we spot Assignable Variation? 

Statistical Process Control 
•  SPC is a methodology associated with the manufacturing production 

environment 
–  We are manufacturing software and have a production line 

•  Control charts provide for differentiating Natural from Assignable 

The procedure is 
•  Sample the process at regular intervals 
•  Plot the measure of performance, e.g. 

–  Test execution time 
–  RPC count 
–  Bandwidth 
–  … 

•  Check (graphically) if the process is under statistical control 
•  If the process is not under statistical control, do something about it 



INTEL CONFIDENTIAL 28 
High	  Performance	  Data	  Division	  

Control Charts 

UCL 

LCL 

R
an

ge
 

Sample number 

| 
1 

| 
2 

| 
3 

| 
4 

| 
5 

| 
6 

| 
7 

| 
8 

| 
9 

Varia1on	  due	  
to	  assignable	  

causes	  

Varia1on	  due	  
to	  assignable	  

causes	  

Varia1on	  due	  to	  
natural	  causes	  

| 
10 



INTEL CONFIDENTIAL 29 
High	  Performance	  Data	  Division	  

Control Charts 

Results consistently above /
below the center line 

Results outside of 
specification 

Results consistently 
increasing / decreasing 



INTEL CONFIDENTIAL 30 
High	  Performance	  Data	  Division	  

Automated Control Charts 



INTEL CONFIDENTIAL 31 
High	  Performance	  Data	  Division	  

Next Steps 

Focus on current ‘performance’ testing 

Manually capture and analyse results 

Use this manual process to validate performance for 2.4 
release 

Review after 2.4 release to begin developing processes 
moving forwards 

Long term extend performance to mean every useful 
measure of Lustre behaviour 

 



INTEL CONFIDENTIAL 32 
High	  Performance	  Data	  Division	  

Summary 

 

We can use statistical methods to help control the changes 
in Lustre 

SPC is a good candidate for that control mechanism 

Using commercial tools and current testing the first steps are 
within reach 

Autotest should allow broad analysis of Lustre performance 
and behaviour 



Thank you 


