

Improving Lustre Testing Version 1.0

Nathan Rutman Chris Gearing Roman Grigorev

Advancing Digital Storage Innovation

Improving the Lustre Test Framework LAD, Sep 2012

Nathan Rutman Roman Grigoryev

- Current Problems
- Possible Remedies
- Change Hurts
- A Plan
- Xperior

Current test problems

- Packaging
 - \circ Test version tied to Lustre version
- Language
 - \circ Bash language is not modular or portable
 - Test scripts are not coherent
- Test selection
 - \circ No test "filters" based on attributes
 - \circ Many tests can't be run individually
 - no random testing
 - no directed testing
- Coverage
 - Poor code coverage (66% functions, 44% branches)
 - Some tests are ineffective, duplicates

Current test problems, continued

- Framework has limited abilities to determine test status
 - \circ universal timeout
 - crashes stop tests
 - output is not machine-readable
- Configuration control is a mess
 - inconsistent formatting abilities
 - inconsistent mounting abilities
 - no/limited control over
 - deployment
 - versions
 - distros
 - ∎ vm's
- No verification of the t-f itself

Current test problems, continued

- Can't test real systems
 - o setup
 - o safety
 - \circ connectivity
- No ability to setup, configure, or explicitly test routing

Possible remedies

- Better test language
- Clarify local/remote operations, roles
- Remote commands via LNET
- Separate configuration and setup/cleanup from tests
- Clarify/enforce test independence
- Remove version dependence
- Package independence

How far down the rabbit hole?

A. Minimally change tests, new framework emulates old

- Less effort
- \circ No need for test verification
- Limited benefits
- Difficult interfacing with bash
- B. New framework, wholesale test changes
 - \circ Tests will have strict, verifiable syntax
 - Single language
 - \circ Strict test life cycles
 - Must develop all functions, port all tests
 - Must verify test correctness
- C. New framework for new tests, wrapper around old tests
 - Smooth transition
 - Must develop all functions

- Aiming for option C
- Clarify and enforce the API to framework functions
- Add API for
 - \circ filter-by-label
 - \circ precondition checks 'skip' shouldn't be a test result
 - permissions mask
 - parameter setting
 - \circ file creation
- Add test metadata labels (e.g. failover, safe, min_ost_count=2)
- Test output in YAML form
 - \circ pass/fail
 - $\circ \text{ timing}$
 - \circ error codes, line nums
- Create separate test package
- Add LNET remote procedure testing upcall (maybe)

- Either fully separate or combine interrelated tests
 o if tests are separate, they must have value when
 - executed separately
- Call error fn at any stage that may fail
 report error code and line number
- Every test restores original state
 - parameter settings (record/restore)
 - leftover files
- Test ordering must be randomizable
- Test ordering must be repeatable
- Parallel test execution

Permission mask

- Impossible to separate setup from some tests
- Instead, explicitly grant permissions for tests
 - 1. small client-based filesystem operations
 - 2. large (OST fill) client ops
 - 3. change debugging levels / capture log ouput
 - 4. set a temporary parameter (set_param)
 - 5. set a permanent parameter (conf_param)
 - 6. set obd_fail_loc
 - 7. register a changelog user
 - 8. start/stop a client
 - 9. start/stop a server
 - 10. failover node to itself
 - 11. failover a node to partner
 - 12. format a target as an mdt/ost
- These are good candidates for an API

To put to the test

- Xyratex is developing for test execution
 open source when finished
- Features
 - Results are in YAML
 - Also supports TAP and HTML output
 - Per test configuration (YAML) in separate files
 - tags, timeouts, etc
 - config file correctness checker
 - \circ Test selection lists
 - Framework unit tests verify framework itself

- Framework divided into 4 components

 management: execution, reporting, filtering
 configuration
- continuous integration (git triggers)
- plugins: additional execution and behavior modules
- Currently supports
 - Lustre tests (ONLY=)
 - IOR, mdtest
 - virtual and real machines

<u>Xperior plugins</u>

• Plugins

- \circ code coverage tool
- static verification tool
- \circ reformat after every test
- o store console output
- store lustre-diagnostics out
- Under development
 - Random order test execution with replay
 - MDSIM test execution
 - IPMI support

	145,100				
	140,100				
	130,100	<u> </u>	/		
	125,100				
	120,000	-			
	110,100				
Cppcheck Result	105,100				
	95.100				
Errors Trend	90,100				
All errors	6 25,100				
92	70,100				
34	65,100				
Summary	55,100				
A 4000 000 •	50,100				
Total	40,100				style' Severity 'perform
92	35,100				0
Details	25,100				
Details	20,100				
Filename	10,100	4 4			
/lustre-we-rel/lustre/cmm/mdc_device.c	5.100				a: mdc_obd - otherwise it is
/lustre-wc-rel/lustre/omm/cmm_object.c)6-21-59)2-19-45)2-00-13	95-36	6-13	s spec - otherwise it is redu
/lustre-wc-rel/lustre/cmm/cmm_object.c	92	12-1 PS	ą	0-H(0-H	S si spec - otherwise it is redu
/lustre-wc-rel/lustre/fid/fid_handler.c	312-16-04_16-49	21.2-16-22.16-21-59 21.2-19-45 21.12-18-05-10-45	96-91-61-81-81-216	81-20-14_25-88-5116 2112-89-04_10-08-5116	8 2: cli - otherwise it is redund
/lustre-wc-rel/lustre/iclient/glimpse.c	5-9	312-15- 312-15-	12-11	12-10	- capcheck will only check 1
Justre-we-reliustre/iclient/icommon_cl.c	- covered line	14 14 14			- cppcheck will only check 1
ustewc-ellibcfs/lbcfs/lnux/linux-debug.c	 covered_line branches_co 		covered -	-runctions_tocal	- capcheck will only check 1
ustre-wc-rel/lbcfs/lbcfs/lnux/linux-proc.c	540	syntaxError	error	Invalid number of character	[{] when these macros are def
/ustre-wc-rel/libcfs/libcfs/linux/linux-proc.c	549	syntaxError	error		(4) when these macros are def
/ustre-wc-rel/lbcfs/lbcfs/linux/linux-proc.c	549	syntaxError	error		({) when these macros are def
/lustre-wc-rel/libcfs/libcfs/util/parser.c	583	doubleFree	error	Memory pointed to by 'line' is	
/lustre-wc-rel/libcfs/libcfs/util/parser.c	646	doubleFree	error	Memory pointed to by 'line' is	
/lustre-wc-rel/libcfs/libcfs/winnt/winnt-proc.c	500	nulPointer	error		ence: entry - otherwise it is red
/lustre-wc-rel/lustre/lblustre/super.c	1903	nulPointer	error		ence: asc - atherwise it is redu
/lustre-wc-rel/lustre/liblustre/tests/replay_ost_single.c		bufferAccessOutOfBounds		Buffer access out-of-bounds:	
/lustre-wc-rel/lustre/liflustre/tests/replay_ost_single.c		bufferAccessDutOfBounds		Buffer access out-of-bounds:	
	ΘV	bufferAccessOutOfBounds	error	Buffer access out-of-bounds:	huf

<u>Xperior, con't</u>

- Initiated via Jenkins
- System config YAML
- Set up cluster
- Install any required test packages
- Test description YAML
- Results YAML

: mds1
: 192.168.200.102
: ssh
: root
: booper
: mdt1
: /dev/sda1
: mds1
: mdt

groupname	:	sanity
executor	:	XTest::Executor:
roles	:	StoreSyslog Stor
description	:	Lustre sanity te
reference	:	http://wiki.lust
php/Testing_Lustre		Code
expected time	:	10
timeout	:	300
cleanup_max_time :		-1
tags	:	functional
dangerous	:	yes
Tests:		
- id		: 0b
- id		: Oc
- id		: 1a
- id		: 1b

```
cmd: SLOW=YES MDSCOUNT=1 mds1 HOST=mft01 mds HOST=mft01 OSTCOUNT=2
                                                                        ost1 HOST=mft01
ost2 HOST=mft01 CLIENTS=mft01cl RCLIENTS=\"\" ONLY=200d DIR=/mnt/lustre PDSH=\"/usr/bin/pdsh
ssh -S -w \" /usr/lib64/lustre/tests/sanity.sh 2>
                                                     /tmp/test stderr.316083.log 1>
/tmp/test stdout.316083.log
completed: yes
dangerous: no
description: Lustre sanity tests
endtime: 1331509252
endtime planned: 1331509541
executor: XTest::Executor::LustreTests
exitcode: 0
expected time: 10
extoptions:
                                                                             xvratex.
 branch: first
 buildurl: 'http://10.76.49.90:8080/jenkins/job/Luste testing 2pc sl61 sl61patchless/.
```

What Next

• We will continue to work on

- \circ Xperior
- Separating tests
- \circ Integrating new features into the current t-f API
- Need community discussion/help on
 - \circ Further defining the new framework API
 - \circ Choosing and porting tests to a new language
 - \circ Changing old tests to meet the new API

Statistical Performance Testing

Chris Gearing - chris.gearing@intel.com Sr. Staff Engineer

17 INTEL CONFIDENTIAL, FOR INTERNAL USE ONLY

Statistical Performance Testing

Analogue testing results

Existing method for performance testing

Statistical performance testing

First steps to statistical performance testing

Broadening performance testing

Problem Statement

Not all testing is straight pass or fail

Functional testing generally is

- Did the file rename correctly
- Did the data write correctly
- Has the OSS successfully failed over

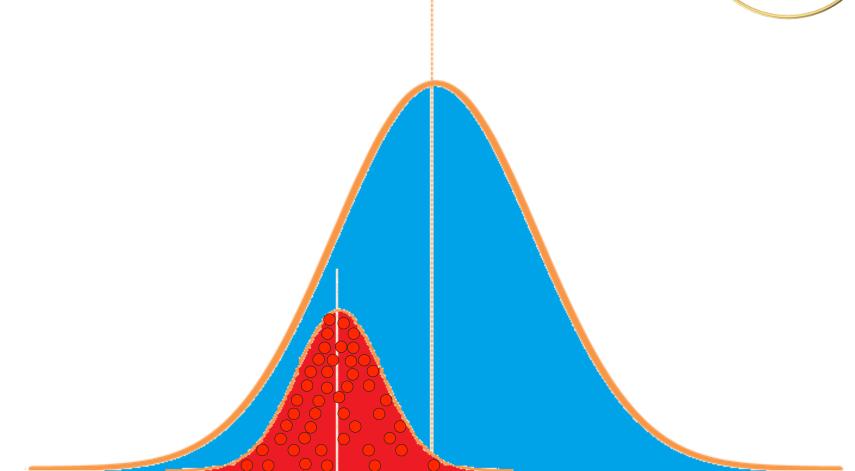
Performance testing generally is not

- What was the data rate of the writes
- How quickly did the OSS fail over
- How many RPC's did we generate per megabyte of data

Performance Testing Today

Errors are dealt with by

- Re-running test
- Changing hardware
- Making 'experience based assessments'


Reality is results are probability based

• Humans not good at assessing probability

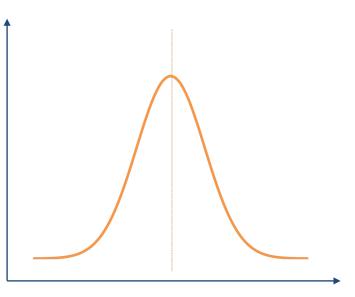
Simple example of problem

Variation of performance

We can think of performance variation in 2 ways

- Natural causes
 - Are when variability of results are within the normal range
 - The process is under control
- Assignable causes
 - Are when the variability of results are outside the normally expected range
 - The process is out of control and a change has happened that we must be able to assign a cause to

Natural Variations

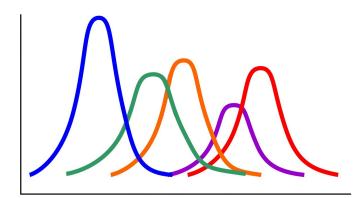

Natural variations in the test process

These are to be expected

Output measures follow a probability distribution

For any distribution there is a measure of central tendency and dispersion

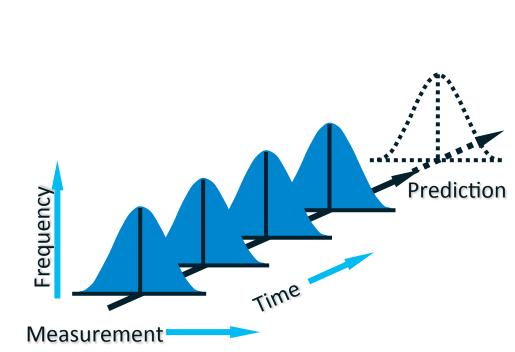
24 INTEL CONFIDENTIAL


Assignable Variations

Variations that can be traced to a specific reason

- Lustre bug
- Test infrastructure failure
- System configuration
- Expected change bug fix / new feature

The objective is to discover when assignable causes are present and eliminate or explain them



High Performance Data Division (in

When only natural causes of variation are present, the output of a process forms a distribution that is stable over time and is predictable

Sample Natural Variation

26

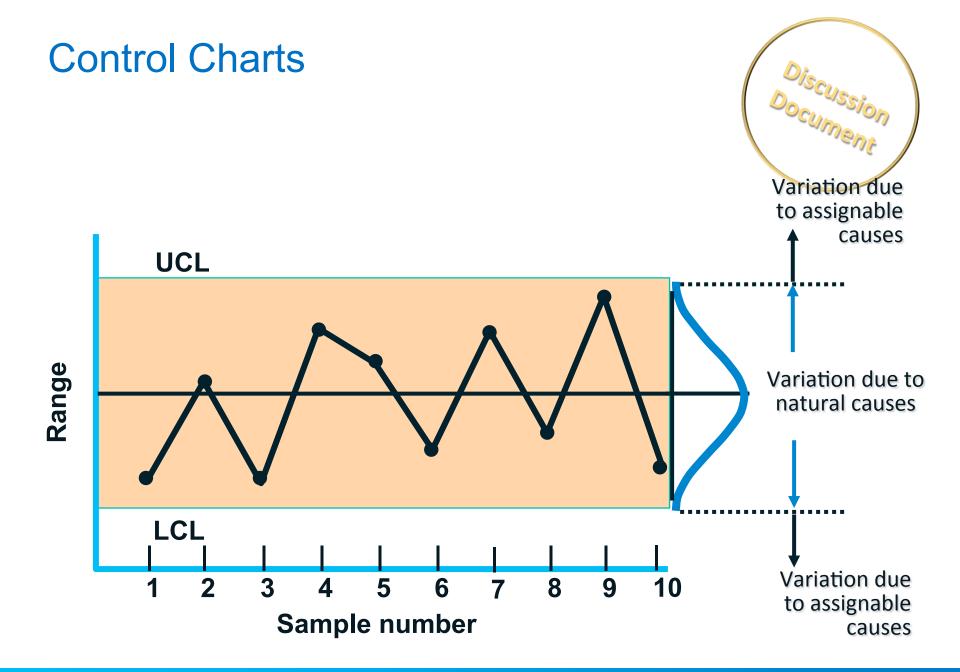
When assignable causes are present, the process output is not stable over time

and is not predicable

Samples Assignable Variation

How do we spot Assignable Variation?

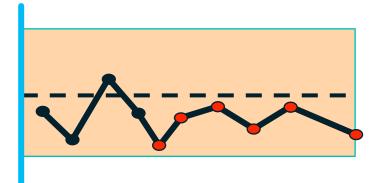
Discussion Document


Statistical Process Control

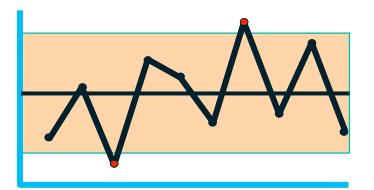
- SPC is a methodology associated with the manufacturing production environment
 - We are manufacturing software and have a production line
- Control charts provide for differentiating Natural from Assignable

The procedure is

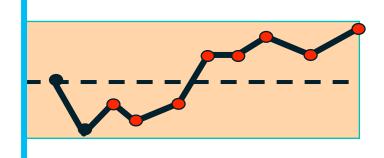
- Sample the process at regular intervals
- Plot the measure of performance, e.g.
 - Test execution time
 - RPC count
 - Bandwidth
 - ..
- Check (graphically) if the process is under statistical control
- If the process is not under statistical control, do something about it



(intel)



Control Charts



Results consistently above / below the center line

Results outside of specification

Results consistently increasing / decreasing

Automated Control Charts

📥 MeasurLink SPC Real-Ti	ime - 09/29/1997 12:13:11						8 ×
$\underline{B} un \underline{C} ollect \underline{V} iew \underline{I} ools \underline{V}$	<u>W</u> indow <u>H</u> elp						
	😢 😤 🕷 🔛 🔇 🔁 🕽	K M 📹 🗖	168 ?!	2			
Process: Turning	Part MTI Block		Featur	e: Cylinder #2 D	lameter	Rev: 1	
XBarR Chart		_ 🗆 🗙	Dbservation	Window			
UCL		2.593691	SBG #	Obs(1)	Obs(2)	Obs(3)	
/ \		V	14	2.413000	2.382000	2.495000	
	1 Million	·2,251619	15	2.402000	2.427000	2.487000	
k /i b >		1.1	16	2.477000	2.454000	2.508000	
LCU	XBar Chart	1.909547	17	2.535000	2.584000	2.552000	
luci / L	10 15	20	18	2.605000	2.682000	2.464000	
1000	-}	0.800097	19	2.552000	3.002000	2.533000	
		0.334381	20	2.366000	2.357000	2.368000	
		0.334681	21	2.327000	2.369000	2.164000	
LCL	¥ ++++++	0.000000	22	2.882000	2.000000	and the second	
	Range Chart	10.00000	- I - I	and the second second		1	-
	00%						
Precontrol Chart (Bilater	ialj		💼 Histogram Ch	nart			
UTL		3.000000	1.0000	1	(7.0000		JTL 3.0000
			11		Mean		
	100		189n-36 ;		i la	1	
	1 manual	A. 440	12		1		
1 I at 1	492	2.000000	10		1		
some call			<u> </u>		÷- 1 -		
$1 \leq \lambda_{\rm F}$							
		1	8				
LTL COLOR		1.000000	4 1				
5	10 15	20					
a		×.					
For Help, press F1		Next	MTI Block, Cylin	nder #3 Diamete	ar	Keyboard Chi	nl:0
i ori icip, preser i		1 NOAR	and block oya			naybourd join	

Discussion Document

Focus on current 'performance' testing

Manually capture and analyse results

Use this manual process to validate performance for 2.4 release

Review after 2.4 release to begin developing processes moving forwards

Long term extend performance to mean every useful measure of Lustre behaviour

'intel

We can use statistical methods to help control the changes in Lustre

SPC is a good *candidate* for that control mechanism

Using commercial tools and current testing the first steps are within reach

Autotest should allow broad analysis of Lustre performance and behaviour

Thank you