ETH zürich

Shifting a Lustre filesystem to flash: challenges and caveats

Diego Moreno LAD 2021

Sept, 30th 2021

Agenda

- Lustre @ ETH Zürich
- Flash storage 101
- Data life cycle as a mandatory duty
- fstrim or a quarter of performance
- Final notes

Lustre @ ETH Zürich

- 2 sites, 3 Lustre filesystems:
 - Leonhard @ Zürich (3.2 PiB Lustre 2.10)
 - Multi-tenancy cluster (presented @ LAD'19)
 - Euler @ Lugano (CSCS):
 - 2.4 PiB Capacity filesystem Lustre 2.12 HDDs storage
 - 240 TiB Scratch filesystem Lustre 2.12 All NVRAM

All NVRAM Lustre Scratch

- 240 TiB Scratch filesystem Lustre 2.12 All NVRAM
- Based on DDN's ES400NV:
 - 24 x 16TB NVRAM
 - 8 OSTs + 4 MDTs on 4 hybrid OSS/MDS VMs

	•00									₽₽₽■	• 🖗 💷	• • • • • •		• • • • •	•••••••		•>0	*Þ@	• A0	90	- A0-	. >0	• A0	- DO	F
-9-	U.	UT	颐		150		155	500	50	iugi	ini	itai	ίαŭ	ja ja	រំលើ	ingi	oil	Qu	onil		500	풻	颪	π.	
))																				101					C
a									3	3£ I		N N							\$13 ,		3			ä.	P
	15.36TB 1 NVMe SED	15																							

Flash storage: disruptive advantages

Flash storage: and a few caveats

Flash storage: this talk focus on these caveats

The rules of our scratch filesystem

Soft quota: 2 TB

Hard quota: 2.5 TB

Grace period: 7 days

Purge files with atime > 15d

EHzürich

"Flash should improve all areas with just less capacity"

EHzürich

The evolution of our scratch filesystem: first month

"Just purge scratch from time to time (we have lots of free capacity). Cross your fingers and fine tuning to handle periods of high IOPS load."

Previous scratch

New flash scratch

"Scratch is down, please fix it ASAP"

ETH zürich

First month with a flash scratch filesystem

Datalife cycle as a mandatory duty

Diagnostic (credits to J. Peyrard, DDN): Idiskfs block allocator problem

for i in /sys/fs/ldiskfs/*/mb_c3_threshold ; do echo 40 > \$i ; done

- Already discussed at LAD'19 (Idiskfs block allocator and aged file system, *A. Blagodarenko*)
- Defaults were simply not good for us => tune mb_c*_threshold on the OSTs
- But, above all:

Trigger nightly <u>automatic</u> scratch purges to keep the filesystem **capacity** usage low

Idiskfs tuning, and then what?

- With the Idiskfs block allocator tuning and the nightly scratch purge the system is responsive
- Let's check the IOR bandwidth for the whole system:

Benchmark reference on perfect conditions

Write	Read
36 GB/s	45 GB/s

IOR after "fixing" our ldiskfs block allocator issue

Write	Read
9.5 GB/s	38 GB/s

Low write performance - Context

Users removing data

- It's scratch
- Quota
- The purge policy encourages user data management

Admins removing data

- In the last 30 days: 161 TB were purged
- 66% of the fs capacity

Perfect write amplification scenario

ETH zürich

Upgrade your flash storage every day: fstrim or -o discard

- Already covered on other LAD talks (e.g: S. Ihara and G. Delbary at LAD'19)
- Write performance before, during and after fstrim:

fstrim -v /lustre/euscrat/ost0004 ; fstrim -v /lustre/euscrat/ost0005
/lustre/euscrat/ost0004: 29.9 TiB (32849356800000 bytes) trimmed
/lustre/euscrat/ost0005: 29.9 TiB (32889314746368 bytes) trimmed

Upgrade your flash storage every day: fstrim or -o discard

No trimming

- An option if writes are minimal, maybe..
- Not an option for a scratch filesystem

fstrim cronjob

- Frequency of the cronjob depends on the fs
- Almost no performance penalty
- Variability in write depending on freq

discard mount

- Aggressive
- Stable write performance
- But, performance under high load?

Final notes

- Take special care of <u>Idiskfs tuning</u> with a flash filesystem
- Be strict with your <u>data management</u> to keep data capacity at good levels
- For highly changing data, trimming might be essential
- Open questions:
 - fstrim (manual trimming) vs -o discard mount option
 - Wear levelling on a scratch filesystem on long term (after 6 months: 99% life remaining)

