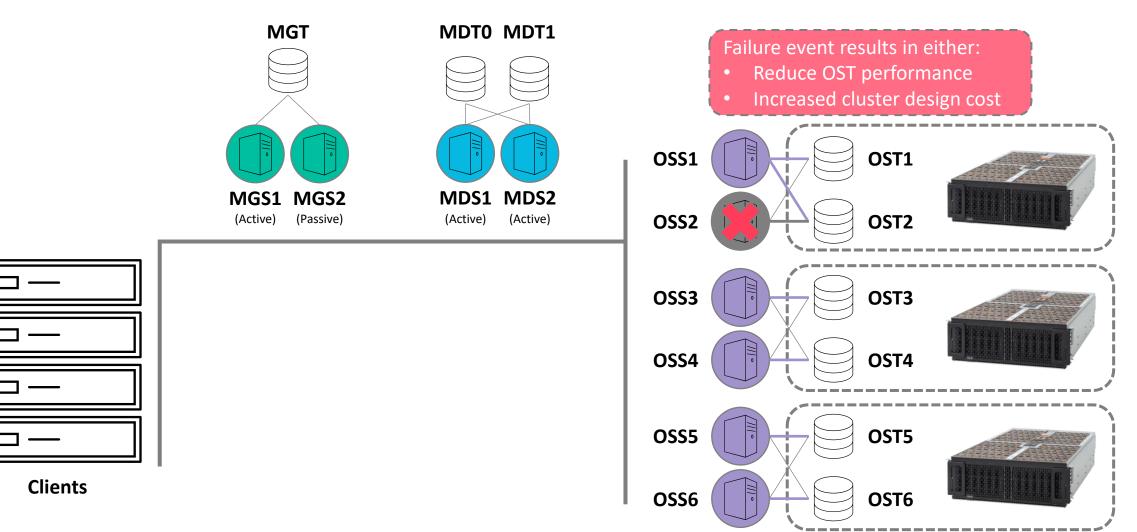
Western Digital.

Improving Parallel File System Performance & Reliability with NVMe-oF[™] Storage


Presenter: Marc Bonnet

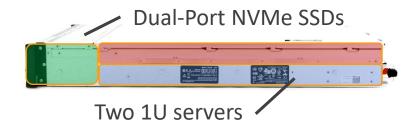
Technologist, Field Applications Engineering, Sales EMEA

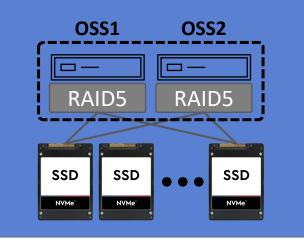
Author: Jonathan Flynn

Senior Technologist, Field Engineering, Platforms

Traditional Parallel File System Architecture

Enclosure Evolution Challenges




Current Approaches to NVMe[™] Based OST

Single Node with Local NVMe

- Single OSS Node with local NVMe SSDs with RAID5/6 protection
- RAID protection provided by host SW (mdadm, erasure coding) or NVMe HBA
- No protection against OSS Server failure
- Limited performance using SW/HW RAID

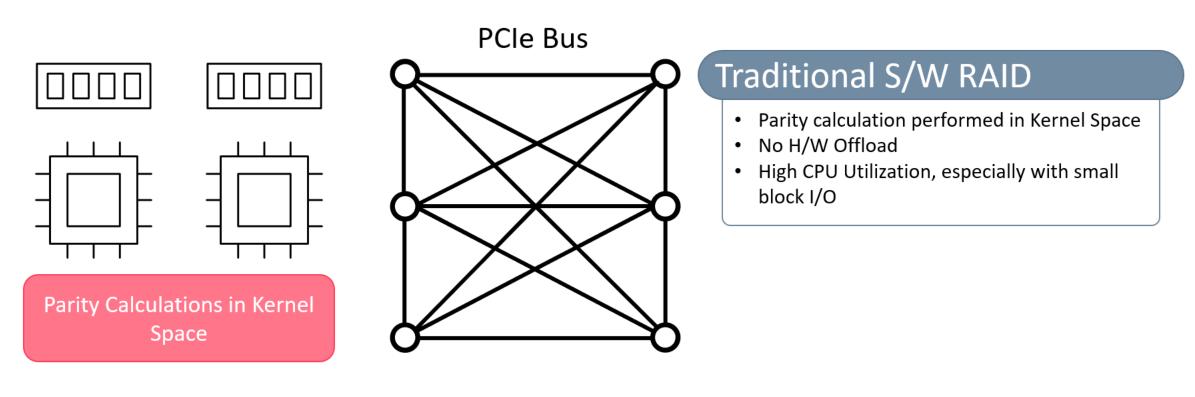
HA Server with 24 Local Dual-Port NVMe

- Dual OSS Nodes w/ local Dual-port NVMe SSDs w/ RAID5/6 protection or erasure coding
- RAID protection provided by host SW (mdadm, erasure coding) or NVMe HBA
- Active/Active design limits max # of SSDs to 12 per OST or requires multiple NVMe name spaces.
 - Traditional 8+1 or 8+2 base 2 OST RAID layout limits useful drives to 20 of 24

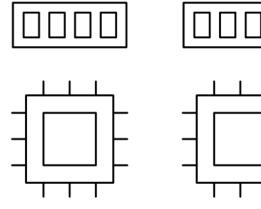
2U24 NVMe-oF JBOF

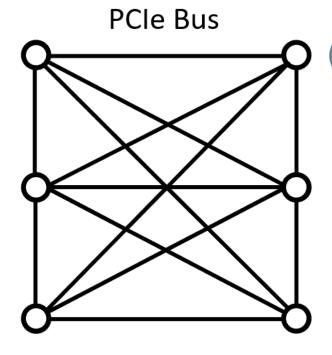
Enabling Standard NVMe PCIe® SSDs to be Shared in an External Enclosure

Enclosure


- 2U enclosure with dual IO Modules for HA
- Similar design to existing SAS SSD enclosures
- 24 standard dual-port NVMe PCIe SSDs
- No data services (i.e. no RAID). Just pass through

Networking

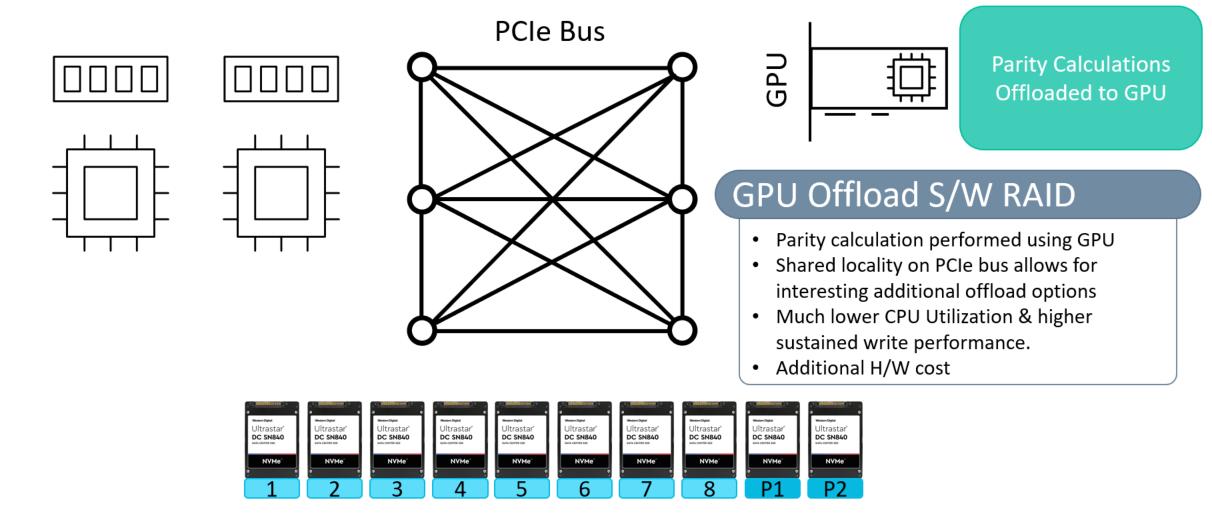

- 2 6 Ethernet Ports
- RoCE v2 or TCP
- RJ45 Management Port
- REST Based Management

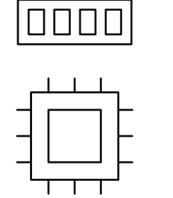


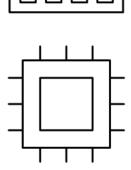
•		· · ·		· · ·		· · · ·		. (ddddania)	•
Weatern Digital Ultrastar' DC SN840 Data COMER SED	Weatern Digital Ultrastar" DC SN840 Data Contrils SID	Weatern Digital Ultrastar' DC SN840 Extla CEMTRE SEE	Weekers Dighat Ultrastar' DC SN840 MAX CENTER NO	Weeken Digitat Ultrastar' DC SN840 Data CEMIER SID	Western Digital Ultrastar' DC SN840 Data con rise sao	Wextern Digital Ultrastar' DC SN840 Outs CENTER HED	Western Digital Ultrastar' DC SN840 DUTA CONTRE SED	Western Digital Ultrastar' DC SN840 Data Contex SAD	Western Digital Ultrastar' DC SN840 DUTA CONTRE SED
NVMe ⁻	NVMe ⁻	NVMe ⁻	NVMe ⁻	NVMe ⁻	NVMe ⁻	NVMe [®]	NVMe [®]	NVMe [®]	NVMe ⁻
	2	3	4	5	6	7	8	P1	P2

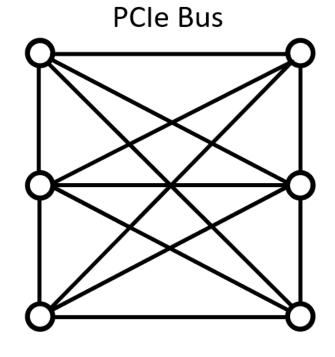
Western Digital.

Parity Calculations Offloaded to CPU Extensions AVX/AVX2

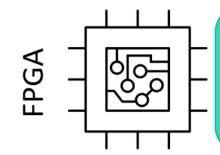



CPU Offload S/W RAID

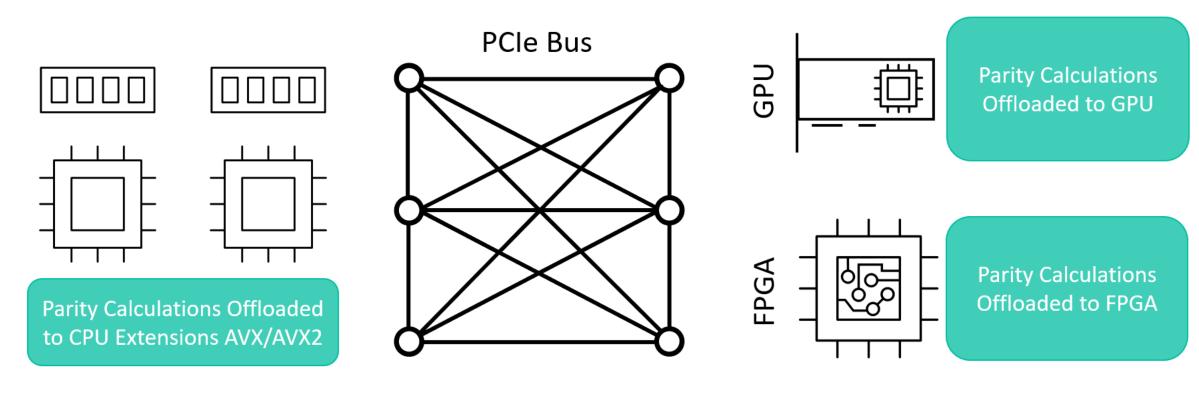

- Parity calculation performed using CPU extensions such as AVX/AVX2
- Much lower CPU Utilization & higher sustained write performance.



Western Digital. © 2021 West



FPGA Offload S/W RAID

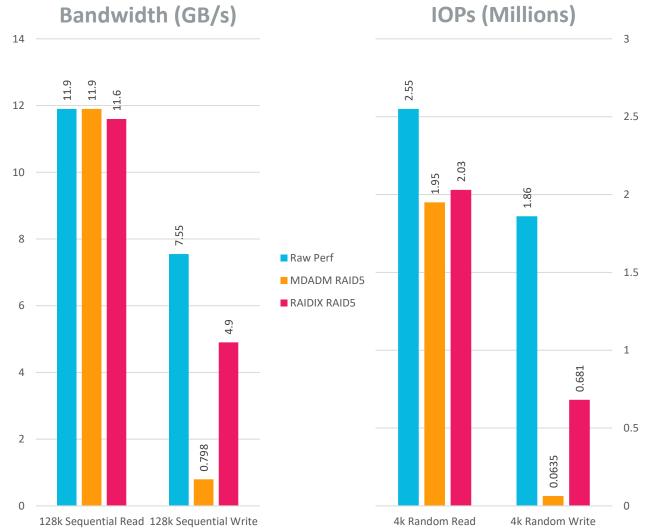

- Parity calculation performed using FPGA
- Shared locality on PCIe bus allows for interesting additional offload options
- Much lower CPU Utilization & higher sustained write performance.
- Additional H/W cost

Parity Calculations Offloaded to FPGA

Western Digital. © 2021 Western D

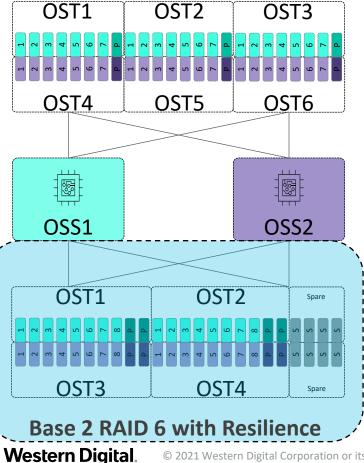
Western Digital Ultrastar' DC SN840 exis Contris 100 dois contris 100	Weatern Taglität Ultrastar DC SN840 Mrits Confile SSD	Western Digital Ultrastar DC SN840 Butta centres soo	Weetern Digital Ultrastar DC SN840 Data COVIDA SED	Weatern Digital Ultrastar DC SN840 Data CEOTER HID	Western Digital Ultrastar DC SN840 Data CENTER SED	Western Digital Ultrastar DC SN840 Butta Conflite SED	Western Digital Ultrastar' DC SN840 DATA COPIER SED	Western Digital Ultrastar' DC SN840 Data Contra Edd
NVMe ⁻ NVMe ⁻	NVMe [®]	NVMe • •	NVMe ⁻	NVMe ⁻	NVMe ⁻	NVMe [®]	P1	NVMe ⁻ P2

Western Digital.


RAIDI

Performance Example with RAIDIX ERA

- Test configuration:
 - 8x Dual Port NVMe Drives with single path.
 - 2x Lanes of PCIe Gen3 per drive
 - MDADM 7+1 RAID 5
 - RAIDIX 7+1 RAID5
 - Sequential 128k
 - Random 4k

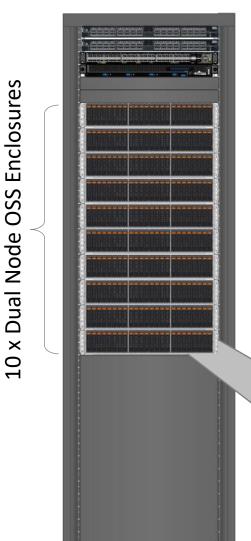

Note: Depending on stripe size, 128k block size may not be ideal for 7+1

HA Server Performance Planning

Existing Architecture

	Write Bandwidth (GB/s)				
	RAW	mdadm	RAIDIX		
OST (7+1)	7.55	0.8 (11%)	4.9 (65%)		
OST per OSS	3x	3x	3x		
OSS	21.65	2.4	14.7		

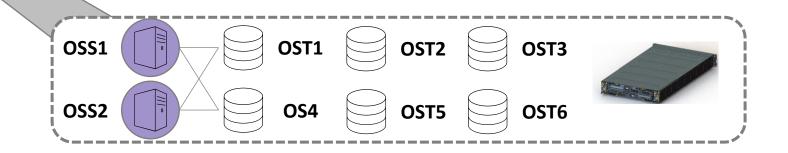
Summary


- 2U Dual Node server with 24 Dual Port NVMe[™] SSDs
- 6 OST volumes built from 8 NVMe namespaces in a 7+1 RAID5
- OSS1 is Active on OST{1-3} and Passive on OST{4-6} ٠
- OSS2 is Active on OST{4-6} and Passive on OST{1-3} ٠
- Difficult to designed for full performance in failover condition
- Network performance needs 2 x 100 Gb links to support reads
- Poor write performance with mdadm at 11% of RAW

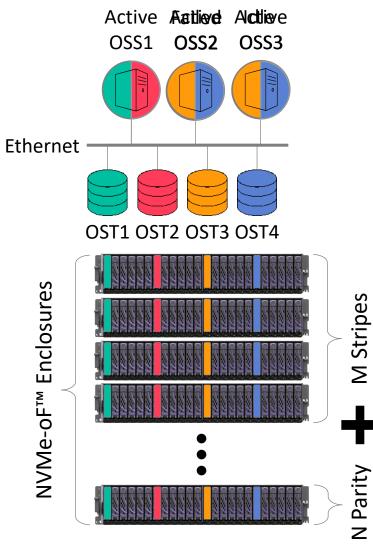
Challenges

- OST failover can only happen to other OSS node in same enclosure ٠
- 24 SSD capacity limits potential number of base 2 RAID sets • (2 x 8+2, 4 x 4+1)

© 2021 Western Digital Corporation or its affiliates. All rights reserved.


Current Rack Diagram With HA NVMe Server

	OST (mdadm)	Enclosure	RACK
HA Enclosures			10
#OSS		2	20
#OST		6	60
Power		1,600 W	17 kW
Write BW (GB/s)	0.8	2.4	24 🗸


Primary Design Consideration

50% of compute & network resources are reserved for failover

NVMe-oF Architecture

Any-to-Any Topology

	Write Bandwidth (GB/s)					
	RAW	mdadm	Accel. RAID	Accel. B ₂ RAID		
	8	7+1	7+1	8+1		
OST	7.55	0.8 (11%)	4.9 (65%)	7 (93%)		
OST per OSS	2x	2x	2x	2x		
OSS	15.1	1.6	9.8	14		

Principles

- Use 1 device from multiple enclosures to create a RAID stripe
- Stripe can be any RAID layout 4+1, 7+1, 8+1, 8+2, m+n
- Any OSS can own any OST No fixed pairing
- Idle OSS can take over for any other OSS failure
- Active OSS host as many OST volumes as capable No 50% reserve
- Improve OST/OSS ratio through accelerated SW RAID

Benefits

- **Resilience**: Any SSD / Server / Enclosure / Network link can fail
- Flexibility: RAID not limited within a single HA node w/ 24 drives
- Cost: Reduced server over provisioning (i.e. reduced server cost)
- Selection: Server choice for OSS no longer needs to be HA node
- Performance: Improved write performance

14

NVMe-oF Rack Architecture

MDS MGS **OSS Nodes** 10 JBOFs 10 NVMe-oF

	HA Node	Approach	NVMe-oF Approach		
	OSS Rack		OSS	Rack	
#JBODs				10	
#OSS		20		8+2	
#OST	3x 7+1	60	3x 8+2	24	
Power		17kW		12kW	
Write BW (GB/s)	2.4	24	21	168	

20% of Compute resources are reserved for failover

50% Reduction in Server Count

7x Improvement in Sequential Write Performance

30% Reduction in Per Rack Power Requirement

Proof of Concept Results

9-Node Lustre Cluster with 8-Clients

Hardware

- 1x MDS
 - Platform: Dell[®] R650
 - Processor: 2x Intel[®] 5317 150TDP 12-Core 3.0GHz
 - Memory: 128GB (8x16GB 2933MHz)
 - Fabric: 1x ConnectX-6[®] 200 Gb Ethernet HCA
 - Storage: 10x 3.2TB WDC SN640 NVMe SSDs

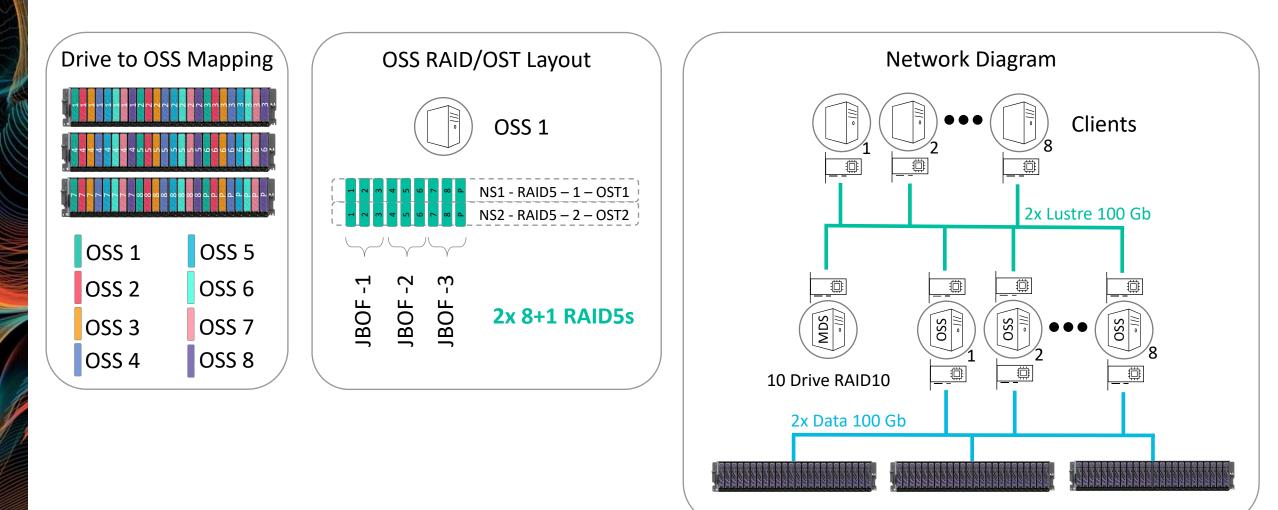
• 8x OSS

- Platform: Dell R650
- Processor: 2x Intel 5317 150TDP 12-Core 3.0GHz
- Memory: 128GB (8x16GB 2933MHz)
- Fabric: 2x ConnectX-6 200 Gb Ethernet HCA
- Storage: Remote NVMeoF
- 8x Clients
 - Platform: Dell R750
 - Processor: 2x Intel 6354 205TDP 18-Core 3.0GHz
 - Memory: 512GB (16x32GB 3200MHz)
 - Fabric: 1x ConnectX-6 200 Gb Ethernet HCA

- Networking:
 - SN3800 64-Port 100 Gb Switch
 - Storage Subnets 1 & 2
 - Lustre Subnet 1
 - SN2700 32-Port 100 Gb Switch
 - Lustre Subnet 2
- NVMe-oF Storage:
 - 3x Western Digital OpenFlex[™] Data24 NVMe-oF[™]
 - 24x Ultrastar[®] DC SN840 3.2TB per Data24

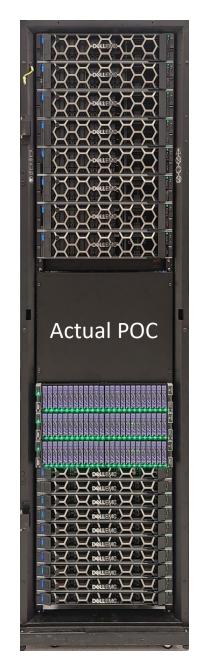
Software

- MDS/OSS
 - Operating System: RHEL 8.3
 - Kernel: kernel-4.18.0-240.1.1.el8_lustre. x86_64
 - Network Stack: In-Box Mellanox 5.0.0
 - Lustre: Feature Release 2.14.0-1
 - RAID Software: RAIDIX ERA 3.3.0-289


Clients

- Operating System: RHEL 8.3
- Kernel: kernel-4.18.0-240.22.1.el8_3.x86_64
- Network Stack: In-Box Mellanox 5.0.0
- Lustre: Feature Release 2.14.0-1

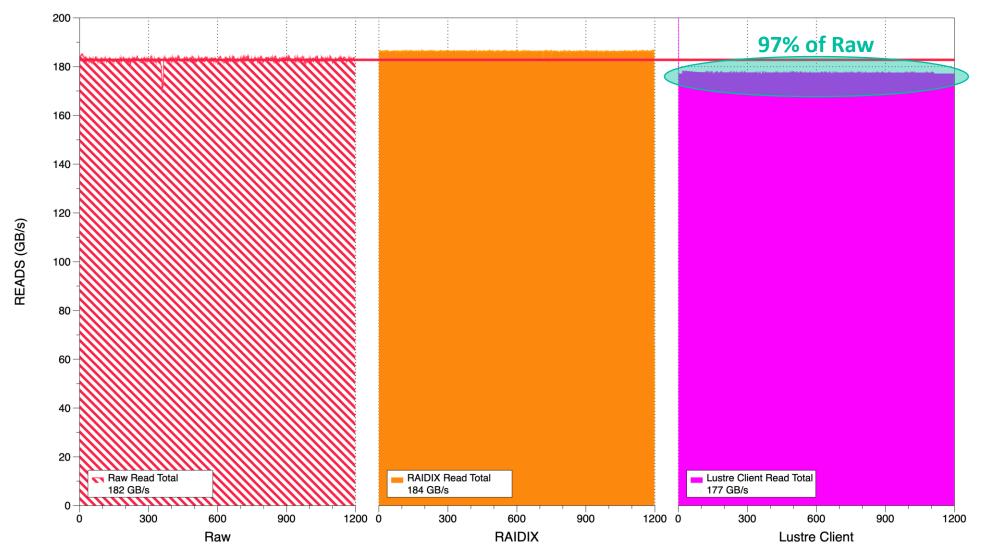
- Networking:
 - Storage:
 - RoCEv2 with Priority Flow Control
 - 2x Storage Subnets
 - Native NVMe Multipathing
 - Lustre:
 - RoCEv2 with o2ib
 - 2x Lustre Subnets



Architectural Diagrams

Testing Methodology

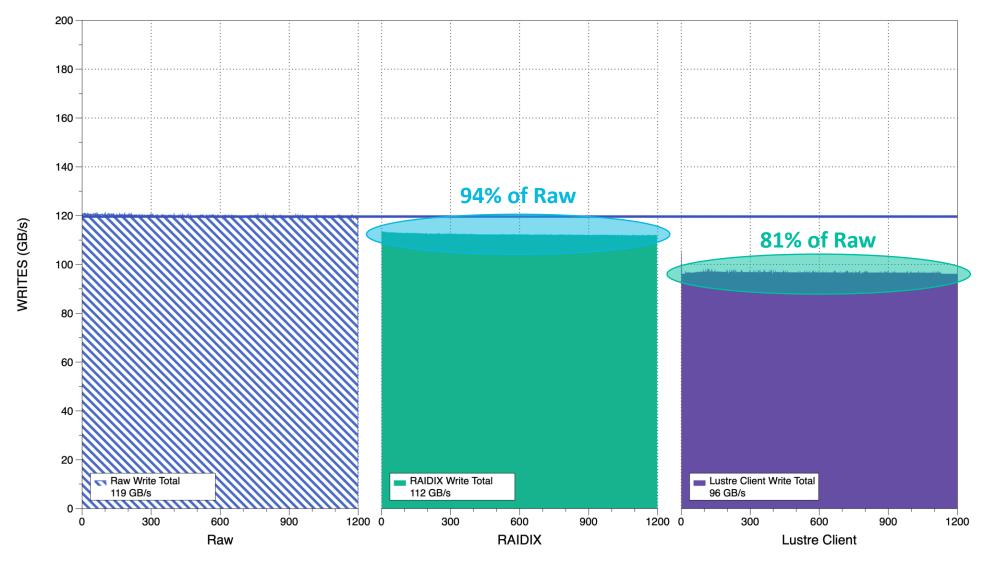
- Benchmark 1: Flexible I/O Tester (fio)
 - File structure:
 - Lustre stripe count '-1'
 - Each client had its own directory
 - Each client had 48x 256 GB test files
 - Each file was in its own subdirectory
 - fio configuration:
 - IO Engine: libaio
 - 10 jobs per file
 - 128k sequential reads and writes
 - Queue depth of 16
 - DirectIO enabled
 - Testing Methodology:
 - Test Configurations:
 - Raw Each OSS tests 18 Namespaces
 - RAIDIX Each OSS tests 2 RAID Groups 8+1
 - Lustre Fio tests as described above
 - Run tests 3 times and average tests
 - 2x 128k sequential fills
 - 1x 128k sequential writes (20 minutes)
 - 1x 128k sequential reads (20 minutes)

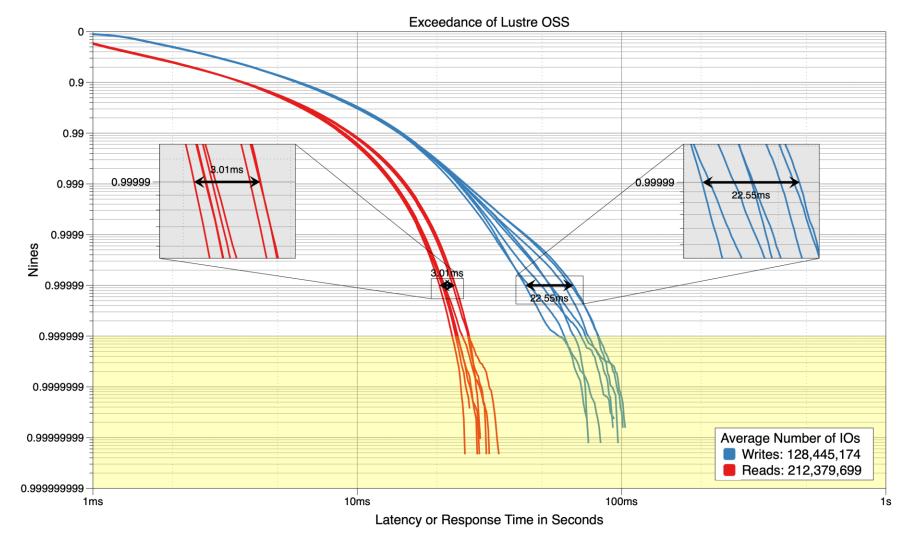


- Benchmark 2: Interleaved or Random (IOR)
 - File Structure:
 - Lustre stripe count '-1'
 - Each client had its own directory
 - Each client had 36x 512 GB test files
 - Each file was in its own subdirectory
 - IOR configuration:
 - MPI: OpenMPI
 - IO Engine: AIO
 - 1m sequential reads and writes
 - 288 Processes
 - DirectIO enabled
 - Collective IO
 - Reordered Tasks
 - 'fsync' on write close
 - Testing Methodology
 - 4 Iterations

fio Results Summary

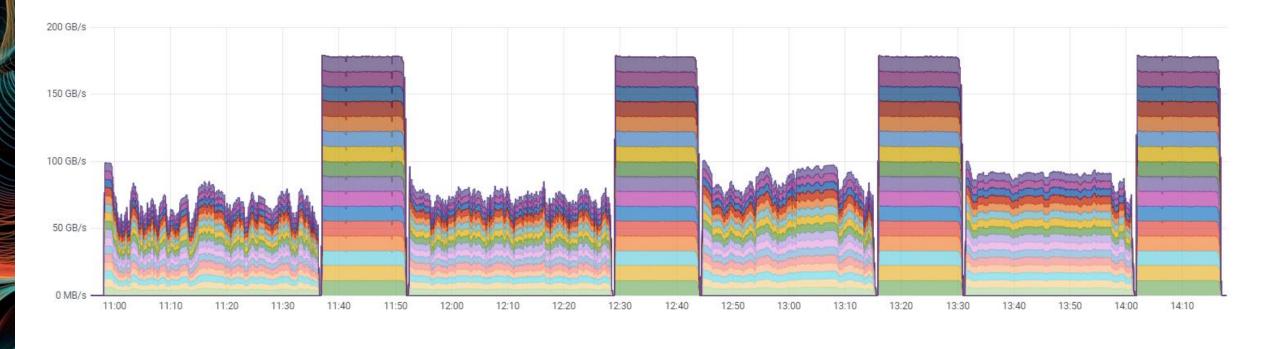
Test	BS	Raw	RAIDIX	Lustre FS
Sequential Write	128K	119.84 GB/s	112.14 GB/s	96.51 GB/s
Sequential Read	128K	182.13 GB/s	184.16 GB/s	177.36 GB/s
Sequential Write % from Raw	128K	100%	94%	81%
Sequential Read % from Raw	128K	100%	101%	97%

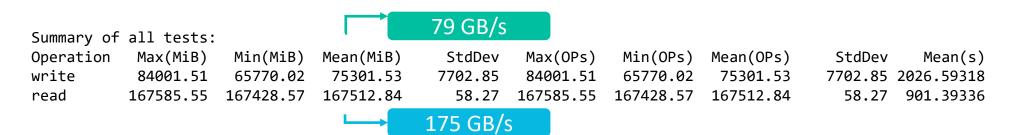

Time Series Read

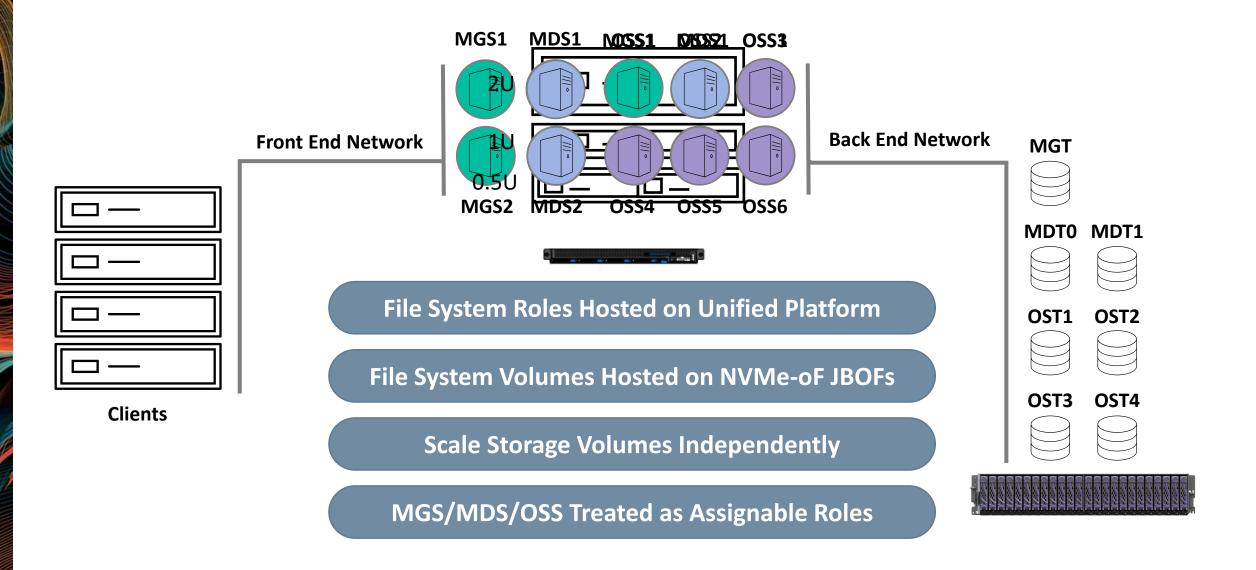

Western Digital. © 2021 West

© 2021 Western Digital Corporation or its affiliates. All rights reserved.

Time Series Write




OSS Performance Variation


Nines: The percent of IOs completing in less than a given Latency or Response Time

IOR Results

NVMe-oF Parallel File System Architecture

Western Digital.

Western Digital, and the Western Digital logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates. The NVMe and NVMe-oF marks are trademarks of NVM Express, Inc. PCIe is a registered trademark of PCI-SIG. All other marks are the property of their respective owners. Dell, the Dell logo, and other trademarks are trademarks of Dell Inc. or its subsidiaries Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Mellanox and ConnectX are registered trademarks of Mellanox Technologies,