

Hewlett Packard Enterprise

Experience Running DMF7 on Lustre

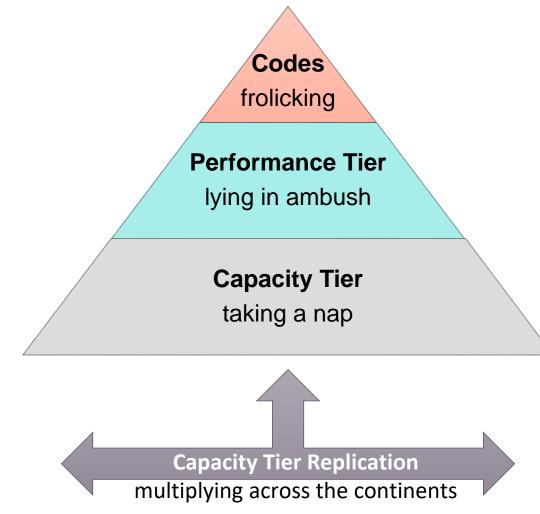
Olaf Weber Master Technologist HPC Data Management & Storage

Disclaimer

- The information contained in this presentation is proprietary to Hewlett Packard Enterprise (HPE) and may contain forwardlooking information regarding products or services that are not yet available.
- Do not remove this slide from the presentation
- HPE does not warrant or represent that it will introduce any product to which the information relates
- The information contained herein is subject to change without notice
- HPE makes no warranties regarding the accuracy of this information

- The only warranties for HPE products and services are set forth in the express warranty statements accompanying such products and services
- Nothing herein should be construed as constituting an additional warranty
- HPE shall not be liable for technical or editorial errors or omissions contained herein

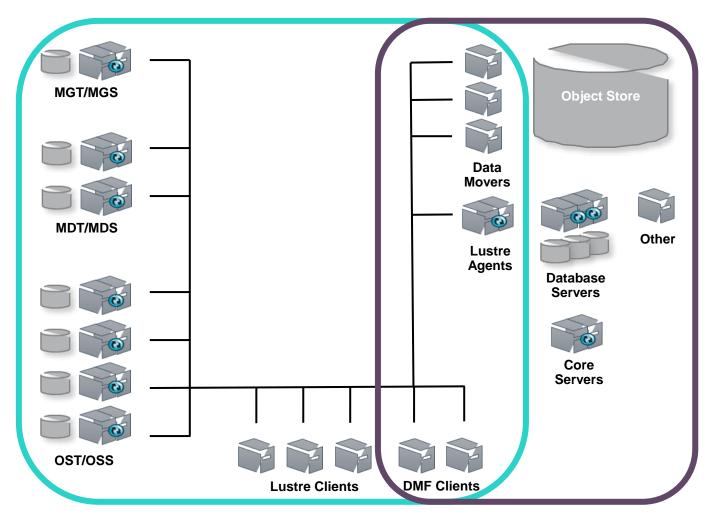
Data Management Framework 7



Data Management Framework 7

Overview

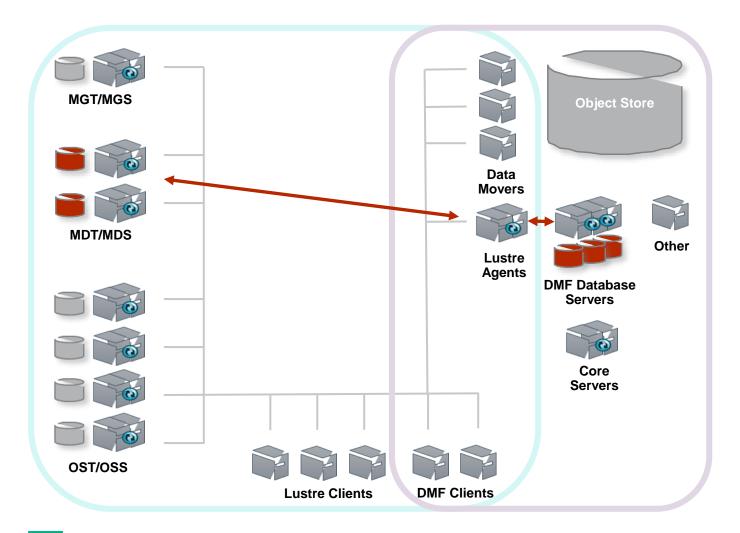
Hewlett Packard


Enterprise

- Designed for Tiered Data Management
- Redesigned from the ground up
 - Build on lessons from DMF 6
- Designed for horizontal scaling
 - Scale by adding more servers
 - Distributed NoSQL database
- Many single-purpose components working together
- Most components are filesystem-agnostic
- Multiple supported filesystem types
 - 1. HPE XFS
 - 2. Lustre
 - 3. IBM Spectrum Scale ("GPFS") in development

Data Management Framework 7 on Lustre

Roles of DMF7 nodes



- DMF Core Servers
 - Manage the other nodes
 - Provide the registry
 - Manage namespaces / filesystems
- DMF Database Servers
 - Manage the DMF database
 - Policy Agent
- DMF Data Movers
 - Move data between filesystem and backend
- DMF Lustre Agents
 - Changelog processor
 - Filesystem scanner
 - Database scrubber
- DMF Clients
 - DMF CLI available

Filesystem Reflection

Hewlett Packard

Enterprise

- Synchronized copy of filesystem metadata
 - Inode metadata
 - Directory tree
 - Extended attributes
 - HSM state
- Maps Lustre FIDs to Object Store
- Cassandra database
- Maintained by the Lustre Agents
 - Filesystem scanner
 - Changelog processor
 - Database scrubber
- Used by policy engine
 - Parallel data mover framework
 - Copytool interfaces with Lustre HSM

Changelog

Lustre Changelog

mkdir tmp

2112648 02MKDIR 09:30:25.501859712 2018.08.24 0x0 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x20000007:0x1:0x0] tmp

chmod a+rwxt tmp

2112649 14SATTR 09:30:28.739566509 2018.08.24 0x14 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

xfs_mkfile 1m file.1m

2112650 01CREAT 09:31:11.661327380 2018.08.24 0x0 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x200019271:0x2:0x0] file.1m

2112651 13TRUNC 09:31:11.741270796 2018.08.24 0xe t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

2112652 11CLOSE 09:31:11.747861801 2018.08.24 0x243 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

touch file.1m

2112653 11CLOSE 09:36:18.556856115 2018.08.24 0x42 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

- Tracks Metadata changes
 - Updated by MDS
 - Stored on MDT
 - Part of filesystem transactions
- Can only be read on Lustre client nodes
 - Must be root or equivalent
- Three types of metadata changes
 - Namespace
 - Side effects
 - Audit trail
- Controlled by per-MDT event mask
- Not a full log of the filesystem actions
 - Tracks that something changed...
 - ...but not necessarily what changed

Reading the Wrong Changelog

LU-12650: get_root_path() filesystem name compare error that leads to fid2path fail

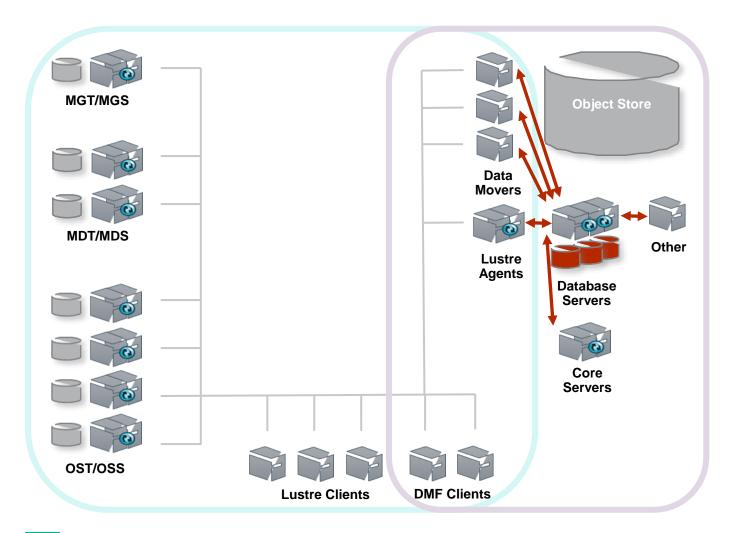
lfs changelog lustre-MDT0000

2112649 14SATTR 09:30:28.739566509 2018.08.24 0x14 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

2112650 01CREAT 09:31:11.661327380 2018.08.24 0x0 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x200019271:0x2:0x0] file.1m

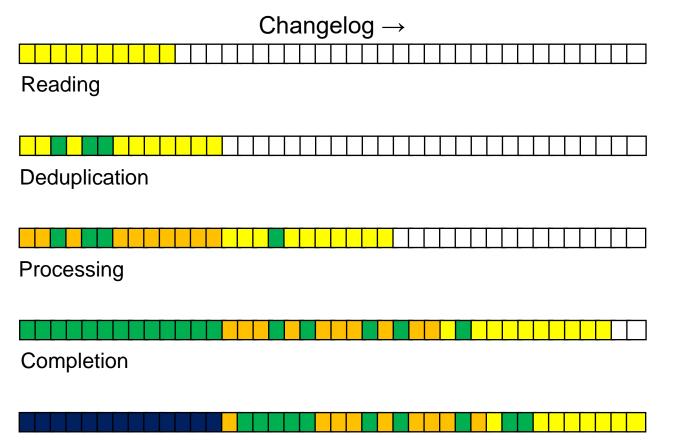
2112651 13TRUNC 09:31:11.741270796 2018.08.24 0xe t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

lfs changelog lustre1-MDT0000


2112649 14SATTR 09:30:28.739566509 2018.08.24 0x14 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

2112650 01CREAT 09:31:11.661327380 2018.08.24 0x0 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x200019271:0x2:0x0] file.1m

2112651 13TRUNC 09:31:11.741270796 2018.08.24 0xe t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1


- We saw the same stream of records for:
 - lustre-MDT0000
 - lustre1-MDT0000
- Did not happen on all nodes.
- Cause:
 - "lustre" filesystem name is a prefix of "lustre1"
 - Code matches prefix instead of full string
 - This is a side effect of LU-12650
- Workaround:
 - No filesystem name that is a prefix of another

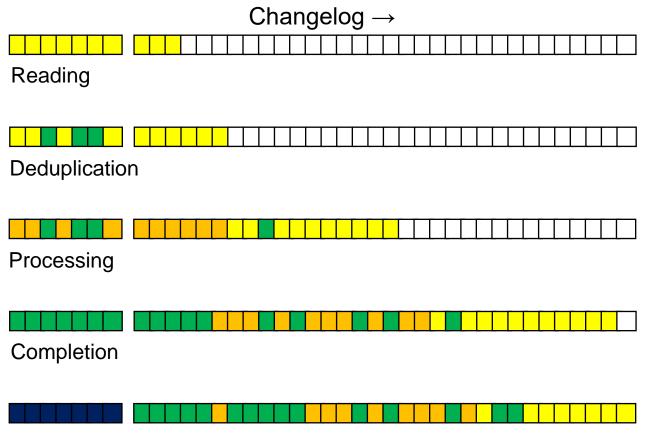
Processing Changelog Records

- Processing a changelog record is work
 - Avoid doing duplicate work
 - Read ahead and drop duplicate updates
- DMF7 coordinates through the reflection:
 - Reflection updates cannot be postponed long
 - The maximum deduplication window is small
- Deduplication is *required* for correctness:
 - Database timestamps have limited resolution
 - Limit to one update to a row within a window
 - Deduplication window has a minimum size
- Deduplication adds performance:
 - Reduce frequency of filesystem access
 - Reduce number of database updates
 - Gains are limited due to small window

Stepping through the Changelog

Clearing

- Asynchronous processing of records:
 - White: unread records
 - Yellow: records read
 - Deduplicate as records are read
 - Orange: records being processed
 - Update of database requested
 - Green: completed records
 - Deduplicated records
 - Update of database confirmed
 - Dark Blue: cleared records
 - Clear contiguous blocks of completed records
- Recordkeeping tracks out of order records
 - Changelog processing got stuck


Out of Order Changelog Records

LU-11426: 2/2 Olafs agree: changelog entries are emitted out of order

- Sometimes the indices of subsequent entries are like this:
 - -2112648
 - 2112649
 - 2112651
 - 2112650
 - 2112652
 - 2112653
- Happens across all Lustre versions
 - Only requirement is sufficient concurrent activity on the filesystem
 - Easy to reproduce by running a cluster in VMs on a laptop
- Implicated in a number of issues:
 - LU-11426: 2/2 Olafs agree: changelog entries are emitted out of order
 - -<u>LU-11205</u>: Failure to clear the changelog for user 1 on MDT
 - LU-11581: Not all changelog entries are returned to userspace

Missing Changelog Records

LU-11581: Not all changelog entries are returned to userspace

Clearing Stops at the Missing Record

- Sometimes a changelog record is missing:
 - Generated for an operation
 - Present in the on-disk log
 - But not returned to userspace
 - This is a side effect of LU-11426
- When a record does not appear at first:
 - It may be out of order and appear later
 - It may be missing and never appear
- Major impact on DMF:
 - Changelog processing got stuck
 - Hole in contiguous block of records
 - Heuristic enables progress
 - Assume loss after reading N more records
 - Filesystem reflection misses an update
 - Filesystem scan required

Also Affects RobinHood

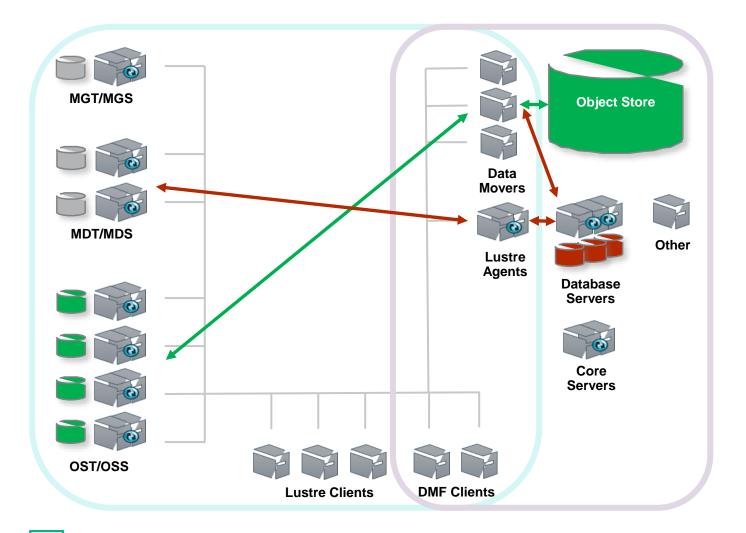
LU-11205: Failure to clear the changelog for user 1 on MDT

- RobinHood is also affected
 - RobinHood processes the changelog in a different way
 - Thus very different symptoms
- Syslog messages:

```
... kernel: Lustre: 11137:0:(mdd_device.c:1577:mdd_changelog_clear()) fs-MDD0000:
Failure to clear the changelog for user 1: -22
```

- RobinHood log messages:
 - ... [13766/22] ChangeLog | ERROR: llapi changelog clear("fs-MDT0000", "cl1", 13975842301) returned -22
 - ... [13766/22] EntryProc | Error -22 performing callback at stage STAGE_CHGLOG_CLR.
 - ... [13766/16] llapi | cannot purge records for 'cl1'

- This is a side effect of LU-11426



HSM Workflow

Hewlett Packard

Enterprise

- Multiple ways to initiate data movement
 - Migration policy
 - Recall on access
 - Manual through CLI
- Data Mover nodes handle bulk traffic
 - Modified version of copytool on agent nodes
 - Mover nodes do actual data movement
- Coordination through the reflection
 - Reflection tracks HSM state
- Interacts with Lustre HSM coordinator
 - Part of Lustre kernel code
 - We encountered some issues

16

HSM Coordinator Restart Panics

LU-11675: Don't allow new HSM requests during CDT_INIT

- # cd /sys/fs/lustre/mdt/lustre-MDT0002
- # echo shutdown > hsm_control
- # cat hsm_control

stopping

cat hsm_control

stopped

- # echo enabled > hsm_control
- # cat hsm_control

init

cat hsm_control

enabled

Hewlett Packard Enterprise

- Restart the HSM coordinator
- In *init* it looks for pending HSM requests
- In *init* phase it accepted new HSM requests
 - These could be given a duplicate ID
 - This triggered an assert
- Fixed under LU-11675
 - Fix is to not accept new requests during init

HSM Files Not Marked Dirty

LU-11369: hsm: files are not dirtied when modified by someone else than their owner

	[alice] \$ touch /mnt/lustre/alice/file	 An archived file has an identical copy stored
	[alice] \$ chmod o+w /mnt/lustre/alice/file	
	[alice] \$ exit	 A dirty file has an older copy stored
	logout	 Modifying an archived file marks it dirty
	<pre>[root] # lfs hsm_archive /mnt/lustre/alice/file</pre>	 This did not happen for files not owned by the modifying user
	<pre>[root] # lfs hsm_state /mnt/lustre/alice/file</pre>	– Fixed under LU-11369
	<pre>/mnt/lustre/alice/file: (0x0000009) exists archived, archive_id:1</pre>	 Code had permission to modify file
	[root] # su - bob	 But not to modify file HSM state
	[bob] \$ echo "123" > /mnt/lustre/alice/file	
	[bob] \$ exit	
	logout	
	<pre>[root] # lfs hsm_state /mnt/lustre/alice/file</pre>	
	<pre>/mnt/lustre/alice/file: (0x0000009) exists archived, archive_id:1</pre>	

Attributes Not Updated on Restored Files

LU-11925: Attributes not updated after open+append and write to archived, released file

```
# echo -n "123" > /mnt/lustre/file
# lfs hsm_archive /mnt/lustre/file
# lfs hsm_release /mnt/lustre/file
stat -c %s /mnt/lustre/file
3
# lfs hsm_restore /mnt/lustre/file
# echo -n "456" >> /mnt/lustre/file
```

stat -c %s /mnt/lustre/file

3

- Query the size of a released file
- Append to file
- File size does not change
- Fixed under LU-11925
 - File size was obtained with an UPDATE lock
 - On restore any such lock must be canceled

Small Files

What is a Small File?

HPE Tfinity ExaScale Tape Library

- Tape is cheap bulk storage
 - If you can afford it
- Tape is slow
 - Physically moving a cartridge in a library
 - Mounting a tape
- Tape is fast
 - LTO-8 native transfer rates are > 300 MB/s
- Tape is big
 - LTO-8 cartridge holds 12 TB uncompressed
- Tape needs a continuous stream of data
 - A good I/O size is between 15 and 20 GB
- A file sized < 18 GB is a small file</p>

Hewlett Packard Enterprise

Handling Small Files

Tape Zones

- DMF collects small files into tape zones
 - "Tape" for historical reasons
 - DMF does this for all files
 - Big files are split across zones
 - Large transfer units are good for S3 as well
 - Especially if you have to pay per transfer
- Zone is written and read as a single unit
 - Can be constructed as a temporary file
 - We prefer a "scatter-gather I/O" approach
- An 18 GB zone may hold many files
 - The files all migrate at the same time
 - All are open simultaneously
- At least one active zone per tape drive
 - 4 to 10 tape drives is typical

An Example for Context

- Take a fresh clone of the Lustre git repo
 - 160 MB
 - 1,923 files and directories
- In an 18GB zone
 - Lustre source fits 112 times
 - Zone then contains 215,376 files
- Assume 5 tape drives
 - 5 active zones
 - Lustre source fits 560 times
 - 1,076,880 files are migrating
- We have seen worse cases

The Small File Problem

- With small files, we can easily have several million files migrating at the same time
- The Lustre HSM coordinator thus needs to track several million active requests
- There is a maximum number of active HSM requests per MDT
- This limit is tunable
- The default is 3
- The current HSM coordinator was not designed for large numbers of requests
- Direct migration to and from high-latency media requires rethinking the HSM coordinator
 - Handle large numbers of requests
 - Keep blocks of requests together
 - Submit all requests for a zone as a single logical block
 - The entire block is sent to a single copytool

Questioned Answers

Hewlett Packard Enterprise

Thank you

Olaf Weber olaf.weber@hpe.com