
Patrick Farrell

LAD 2021: Lustre Single Stream Performance



whamcloud.co
m

Note on Benchmarks

►Benchmarks from several sources, primary system:
DDN AI 400
1 x Client(1 x XeonGold 6338, 512GB DDR4 3200MHz, 1 x IB-HDR200, , CentOS8.3, 
MOFED-5.2)

► Best case numbers: IOR with 256 MB I/O size, 4M stripe size



whamcloud.co
m

Single Stream Performance: Definitions

►“single stream”: The I/O output of a single userspace process using 
standard POSIX interfaces

►“How fast can dd go?”

►Interesting because:
• Foundation of other performance behavior

• Behavior of one stream creates (or prevents) scalability across many streams

• Many activities have single stream portions



whamcloud.co
m

Buffered Write Buffered Read DIO Write DIO Read
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Pre Lustre 2.15 (2.12, 2.14...)

M
iB

/s

Single Stream Performance: Where We Started

4 GiB/s



whamcloud.co
m

Single Stream: Current Performance

► This is best case, any I/O size, any stripe/RPC size, etc.

► Limited to ~1.5-2.0 GiB/s for buffered or direct I/O (except for buffered reads)

► Has only increased with CPU speed since ~2012

► NB: Buffered reads 3.5-4.0 GiB/s with parallel readahead

► Not that fast – GPFS is faster, and some object stores much faster

► Why don’t we do better?  Buffered I/O is hard, but what about direct I/O…?



whamcloud.co
m

Direct I/O: Simple

► User provides aligned memory

► No need for memcopy() or allocation of pages in the kernel

► No page cache – don’t have to insert and manage pages

► Much simpler than buffered I/O, much more scalable w/multiple processes

► Expected to be synced to disk afer write call completes � sync is costly, but makes  
for simple I/O lifecycle



whamcloud.co
m

Direct I/O: Simple, not fast(?)

► Small direct I/O performs badly
• cost of sync() is painful for writes

• no readahead possible for reads (because no cache)

► But … what about large Direct I/O?

► If a user provides (or asks for) a large amount of data, why can’t we write or read 
that data quickly?

► There’s no cache to fill, so we should be able to process more rapidly than for 
buffered I/O

► But Lustre direct I/O doesn’t scale with size.



whamcloud.co
m

Direct I/O is Serial(!)

► It turns out Direct I/O RPC issuance is serialized with each RPC sync()’ed before 
sending others(!)

► Example: User does 16 MiB I/O, Lustre using 4 MiB RPCs:
Prepare 4 MiB RPC  wait for sync()  prepare 4 MiB RPC  wait for sync() … etc.  (Read                                           
is similar)

► Time to write (or read) data:
Prep RPC + sync + prep RPC + sync … = n*(prep RPC + sync), where n is # of RPCs

► Zero parallelism(!)



whamcloud.co
m

Parallel Direct I/O

► Prepare RPC  send  Prepare RPC  send …  sync() afer all data is sent.                                                        
► Send all RPCs and *then* wait.  For the 16 MiB I/O and 4 MiB RPCs, we send 4 RPCs.

► Time is:
rpc … rpc … rpc … rpc
   sync ………..
               sync ………..

        sync ………..
                      sync ………..

► Time = n*(create RPC) + sync*1 (all sync()s are in parallel)



whamcloud.co
m

Buffered Write Buffered Read DIO Write DIO Read
0

1000

2000

3000

4000

5000

6000
Parallel DIO

2.14

2.14 + PDIO

M
iB

/s

Performance with Parallel DIO

4 GiB/s



whamcloud.co
m

Parallel Direct I/O: First results

► Results: 4.5-5.0 GiB/s best case (compare to previous 1.5-2 GiB/s)

► This is great!  But … can we do better?

► The answer is yes – very much so.



whamcloud.co
m

Direct I/O Code Efficiency

► Direct I/O code was never made efficient - not visible because all time spent waiting 
for sync() (so more efficient direct I/O code just spent more time waiting for sync())

► Much code shared with buffered (ie, page cache) path – careful page management 
for caching/concurrent access

► Every page in the page cache has an independent life – can be accessed, updated, or 
removed by itself, at any time

► Managing page state is expensive – set up, refcounting, locking…

► None of this is required for direct I/O



whamcloud.co
m

Direct I/O Code Efficiency

► Direct I/O pages are not accessible to other threads – they only exist during the I/O, 
and are not in cache

► No independent life cycle for each page, so (almost) no per-page:
Locking
Refcounting
State management

► There is not zero management required for direct I/O pages – but it’s close.

► Many small changes to take advantage of this in 2.15...  Cuts per page time by ~70%.



whamcloud.co
m

Changes (Examples from LU-13799)

► lov: Cache stripe offset calculation

► llite: Move free user pages

► llite: Implement lower/upper aio

► osc: Always set aio in anchor

► llite: Simplify cda_no_aio_complete use

► osc: Improve osc_queue_sync_pages

► clio: Skip prep for transients

► llite: Adjust dio refcounting

► lov: Improve DIO submit

► llite: Remove transient page counting

► llite: Modify AIO/DIO reference counting

► osc: Simplify clipping for transient pages

► clio: Implement real list splice

► osc: Don't get time for each page



whamcloud.co
m

Where We Are

Buffered Write Buffered Read DIO Write DIO Read
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Lustre 2.14, Lustre 2.15

2.14

2.15

M
iB

/s

10x10x

4 GiB/s



whamcloud.co
m

What’s lef?

► Prototype changes to increase batching (many things only need to be done per I/O)

► Changes to remove more page state tracking

► Various small simplifications and code removals

► Some big stuff lef, some element of diminishing returns…



whamcloud.co
m

2.15, 2.16+: Direct I/O

► Currently: ~18 GiB/s (slightly better than graph shows)

► Existing prototype changes to ~25+ GiB/s (2.16?)

► Hard to say final limit.  Would prefer not to speculate.  Still some headroom.

► Other benefits:
Direct I/O is lockless(!)
Improves shared file writes



whamcloud.co
m

Buffered I/O: Lagging behind

Buffered Write Buffered Read DIO Write DIO Read
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Lustre 2.15: Buffered vs Direct

2.14

2.15

M
iB

/s

10x10x

0x

0x



whamcloud.co
m

Performance with I/O Size

4K 16K 64K 256K 1M 4M 16M 64M 256M
0

500

1000

1500

2000

2500

3000

Performance with I/O Size (Write)

2.14 Buffered

2.14 DIO

Write Size

M
iB

/s



whamcloud.co
m

Buffered I/O vs Direct I/O

► Buffered I/O is good at small sizes (aggregation, readahead)

► But doesn’t scale – Direct I/O dominates at larger sizes and in shared files

► Buffered I/O doesn’t scale because of costs of caching (interestingly, not memcopy – 
caching)

► Direct I/O must be aligned – buffered I/O handles alignment inside the kernel (data 
is still aligned before going on the wire – just done by the kernel)

► But most data is used once: Read once, or written but not read (at least not in the 
same job)…



whamcloud.co
m

Uncached Buffered I/O

► An ‘uncached’ variant of buffered I/O, where data is copied to a buffer (but not 
placed in cache), would be much faster at larger sizes

► Switch to this at larger sizes

► Essentially create a buffer and do direct I/O from that buffer

► Saves expense of placing data in the page cache

► Not as fast as Direct I/O, but much faster than regular buffered I/O (50+% of direct 
I/O?)

► We can do it – prototyped successfully.  (2.16+?)



whamcloud.co
m

Wrap Up

► Direct I/O is serialized at the RPC level, and (it turns out) very inefficient

► 2.15: Direct I/O single stream performance from ~2.0 GiB/s  18 GiB/s              
► Future expectations: 20+ Gib/s

► Because Direct I/O is lockless, reduces/removes shared file contention(!)

► Requires using Direct I/O, requiring alignment, has poor performance at smaller sizes

► Future (2.16+):

► Buffered I/O: Cost is mostly in caching, not memcopy

► Possible to make a buffered/direct hybrid path: Use buffered at smaller sizes, use new 
uncached buffered I/O at larger sizes

► Much more scalable than existing buffered I/O

► Early prototype



whamcloud.co
m

Thank you

► Thank you for listening.

► See LU-13798, LU-13799 and linked tickets for further details.

► Questions to pfarrell@whamcloud.com

► Quick thanks to Nathan Rutman, Shilong Wang, and Andreas Dilger for assistance 
and support on this

mailto:pfarrell@whamcloud.com

	Diapo 1
	Note on Benchmarks
	Single Stream Performance: Definitions
	Single Stream Performance: Where We Started
	Single Stream: Current Performance
	Direct I/O: Simple
	Direct I/O: Simple, not fast(?)
	Direct I/O is Serial(!)
	Parallel Direct I/O
	Performance with Parallel DIO
	Parallel Direct I/O: First results
	Direct I/O Code Efficiency
	Direct I/O Code Efficiency
	Changes (Examples from LU-13799)
	Where We Are
	What’s left?
	2.15, 2.16+: Direct I/O
	Buffered I/O: Lagging behind
	Performance with I/O Size
	Buffered I/O vs Direct I/O
	Uncached Buffered I/O
	Wrap Up
	Thank you

