
Dr. Sarah M. Neuwirth
Heidelberg University, Germany

LAD’20, October 2020

Parallel I/O Optimization on Lustre
Best Practices and the Future

Introduction to Parallel I/O
Why is Scientific I/O so difficult?

• Scientists think about data in
terms of their science problem:
molecules, atoms, grid cells,
particles.

• Ultimately, physical disks store
bytes of data.

• Layers in between, the application
and physical disks are at various
levels of sophistication.

Source: Rob Latham et al., “Parallel
I/O in Practice”, SC Tutorial.

2Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Molecular dynamics
modeling of viruses.

Weather forecasting (NOAA).

Ocean modeling (HKUST).

Injection process in
combustion engines (ORNL).

Introduction to Parallel I/O
Sharing Patterns (I)

Single Writer (Serial) I/O:

• Each task sends its data to a master

that writes the data.

• Advantages

 Simple to implement and easy to manage

• Disadvantages

 Scales poorly

 May not fit into memory on task P0

 Bandwidth is very limited

File

P0 P1 P2 P3 P4 PN...

File0

P0 P1 P2 P3 P4 PN

File2File1 File3 File4 FileN...

...

3Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

File-Per-Process I/O:

• Each task writes its data to a separate file.

• Advantages

 Simple to program

 Can be fast (up to a point)

• Disadvantages

 Can quickly accumulate many files

 With Lustre, MDS limit hit very fast

 Difficult to manage a huge number of files

Introduction to Parallel I/O
Sharing Patterns (II)

File

P0 P1 P2 P3 P4 PN

...

...

 File

P0 P4

...

...
P1 P2 P3

...

4Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Single Shared File I/O:

• Each task writes its own data to the same file

using MPI-IO mapping.

• Advantages

 Single file makes data manageable

• Disadvantages

 Lower performance than file-per-process for some

concurrencies

Collective Buffering I/O:

• Groups of tasks perform parallel I/O on the

same file or different files.

• Advantages

 Better performance than single shared file

 Fewer files than file-per-process

• Disadvantages

 Algorithmically complex

Source: Richard Gerber, “Introduction
to Parallel I/O”, NERSC, August 2013.

Lustre File System Striping
Basics

• Ability to stripe data across multiple OSTs

• Striping offers two benefits:
 Large File Sizes:

• The ability to store large files by placing chuncks of

a file on multiple OSTs. A file’s size is not limited to

the space available on a single OST.

 Bandwidth:

• An increase in bandwidth because multiple

processes can simultaneously access the same file.

A file’s I/O bandwidth is not limited to a single OST.

• The file layout is selected by the client, either
 By policy (default settings, inherit from parent)

 By the administrator, user or application

File A File B File C OST Object

OST0 OST1 OST2

0

3

6

1

4

2

5

0
0

File striping, RAID-0 pattern.

5Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Source: NICS, “Lustre Striping Guide”, online:
https://www.nics.tennessee.edu/computing-
resources/file-systems/lustre-striping-guide

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-striping-guide

Plain File Layout:

• Information about where file data is located on

the OST(s) is stored as an extended attribute

called the Layout Extended Attribute (EA).

Progressive File Layout (PFL):

• Uses composite layouts to allow different RAID-0

layouts to describe different extents of a file.

• Basically an array of sub-layout components, with

each sub-layout component being a plain layout

covering different and non-overlapped extents.

• Reasonable performance for a variety of I/O

patterns expected.

• Simplifies Lustre usage for novice users.

• Stripe layout changes as file grows.

Lustre File System Striping
File Layouts

FID

Layout EA

OST0
Object A

OST1
Object B

OST1
Object C

OST0

OST1

OST1

Object A Data Stripe 0

Object B Data Stripe 1

Object C Data Stripe 2

Metadata Server Object Storage Server

6Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Lustre File System Striping
Standard Stripe Allocation Methods

• Round-robin allocator – When the OSTs have approximately the same amount of free space, the

round-robin allocator alternates stripes between OSTs on different OSSs, so the OST used for stripe 0

of each file is evenly distributed among OSTs, regardless of the stripe count.

• Weighted allocator – When the free space difference between the OSTs becomes significant, the

weighted algorithm is used to influence OST ordering based on size (amount of free space available on

each OST) and location (stripes are evenly distributed across OSTs).

7Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

File 1: OST1, OST2, OST3, OST4

File 2: OST5, OST6, OST7

File 3: OST0, OST1, OST2, OST3, OST4, OST5

File 4: OST6, OST7, OST0

Simple example with eight OSTs and one OSS:

Source: Lustre Operations Manual, Chapter 19.

Lustre File System Striping
User Tools for Striping

• lfs setstripe – set striping pattern of a new file or for an existing directory over the
command line

 Create a new plain file or directory with one single layout:

• lfs setstripe [OPTIONS] {directory|filename}

 Create a new composite file, add one or more layout components to an existing composite file, or

set or extend the default template on an existing directory:

• lfs setstripe {--component-end|-E end1} [component1_OPTIONS] [{--component-end|-E end2}

[component2_OPTIONS] ...] {directory|filename}

• Example: lfs setstripe -E 128M -c 1 -E 512M -c 3 -E 2G -c 8 -E -1 -c 16 <filename>

• llapi – setting Lustre properties in a C program

 llapi_file_create() – can be used to set the striping pattern for a new plain file

 No API for creating or extending composite files!

8Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth
Source: Lustre Operations Manual, Chapters 19 and 42.

Best Practices for File I/O
Alignment of Data Access

• Alignment of data access can be critical!
 Sub-block, non-aligned accesses require pre-fetching and buffering, at the minimum

 Additional file locking overhead between threads or processes can add further overhead

• Try to minimize both the overhead associated with
 Splitting an operation between storage targets and

 Contention between writing processes over a single storage target

Memory buffer

A B C

Memory buffer Memory buffer

A CBACB A CBACB A CBACB

B BBBBB C CCCCCSegmented File

Strided File CBA CBA

CCBBA AAAAA AA

9Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Best Practices for File I/O
High-level I/O Libraries, Middleware, and MPI

10Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Application

High-level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O and Storage Hardware

I/O Middleware
organizes accesses from
many processes, especially
those using collective I/O.

MPI-IO

Parallel File System
maintains logical space and
provides efficient access to
data.

Lustre, GPFS, PVFS2, BeeGFS

I/O Forwarding
bridges between application
tasks and storage system and
provides aggregation for
uncoordinated I/O.

IBM CIOD, IOFSL, Cray DVS

High-level I/O Library
maps application abstractions
onto storage abstractions and
provides data portability.

HDF5, (p)netCDF, ADIOS

Best Practices for File I/O
Recommendations at a Glance

1) The stripe alignment of data can be critical.

2) The size and location of I/O operations should be carefully managed to
minimize the file locking contention.

3) The I/O request size (i.e., the transfer size) should be large: write fewer big
chunks of data (i.e., a full stripe width or greater) rather than small bursty I/O.

4) It is recommended to use high-level I/O libraries or middleware to write
flexible, portable programs. They map application abstractions onto storage
abstractions and organize accesses from many processes.

5) Perform parallel I/O: single writer I/O can not take advantage of the system’s
parallel capabilities.

6) The user should have a good understanding of how and how much the
application outputs before tuning the striping pattern!

11Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Best Practices for File I/O
Striping Recommendations

Plain File Layout

• #𝑓𝑖𝑙𝑒𝑠 ≥ #𝑂𝑆𝑇𝑠: Reduce the Lustre contention and

OST file locking

𝑠𝑡𝑟𝑖𝑝𝑒 𝑐𝑜𝑢𝑛𝑡 = 1

• #𝑓𝑖𝑙𝑒𝑠 < #𝑂𝑆𝑇𝑠: Utilize as many OSTs as possible:

𝑠𝑡𝑟𝑖𝑝𝑒 𝑐𝑜𝑢𝑛𝑡 =
#𝑂𝑆𝑇𝑠

#𝑓𝑖𝑙𝑒𝑠

• #𝑓𝑖𝑙𝑒𝑠 = 1: Maximize the parallel access performance:

𝑠𝑡𝑟𝑖𝑝𝑒 𝑐𝑜𝑢𝑛𝑡 =
#𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑠, if #𝐴𝑔𝑔𝑟.≤ #𝑂𝑆𝑇𝑠
#𝑂𝑆𝑇𝑠, otherwise.

12Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Progressive File Layout

• The progressive layout should stop growing at the

point where the total number of stripes would equal or

exceed the number of OSTs.

• To avoid oversubscribing OST bandwidth, OSTs used at

the beginning of the file should not normally be re-

used for objects allocated later in the file.

Sources:
(1) Sarah Neuwirth, “Accelerating Network Communication and
I/O in Scientific High Performance Computing Environments”,
Ph.D. Thesis, 2018.
(2) Lustre Wiki, “Progressive File Layouts”, available online:
https://wiki.lustre.org/Progressive_File_Layouts

https://wiki.lustre.org/Progressive_File_Layouts

Best Practices for File I/O
OST Utilization with Standard Allocation Methods

13Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Non-PFL setup in FPP mode (stripe count = 8). PFL setup in FPP mode with 4 extents.

Recent Research Developments
Client- and Server-side Approaches

• Client-side approaches…
 Address load imbalance on a per job basis

 Can provide transparent implementations

 Do not consider requirements of other applications

 Lack a global view on storage stack components

• Server-side approaches…
 Have a global view of storage servers

 Simultaneously allocate resources to all concurrent applications

 Require modification of application source code

 Do not consider different file layouts

14Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

iez Client-side components:

• Capture applications’ I/O characteristics

• Predict future requests based on the traced I/O

• Store the predicted requests to be used by server-side

• Place the applications’ I/O workload on the allocated

set of OSTs

Recent Research Developments
iez – End-to-End Control Plane Architecture

15Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

iez Server-side components:

• Collect real time statistics from OSSs, OSTs, and MDS

• Allocate a set of OSTs to application data, yielding a

balanced load

• Store the load-balanced set of OSTs to be allocated for

every request

Source: Arnab K. Paul, Sarah
Neuwirth et al., “iez: Resource
Contention Aware Load
Balancing in Large-Scale Parallel
File Systems”, IPDPS 2019.
Extended version (including PFL)
submitted to IEEE TPDS.

Performance Evaluation
Lustre Testbed Deployment

• 10 Node Cluster with:
 1 MDS, 7 OSSs, 2 Clients

 CentOS 7, Lustre 2.10

 8 cores / node, 3.2 GHz AMD Processor

 16 GB Memory

 5 OSTs per OSS (10 GB storage per OST)

• File Layouts:
 Simple File Layout (Non-PFL)

 Progressive File Layout (PFL)

• Sharing Patterns:
 File Per Process (FPP)

 Single Shared File (SSF)
16Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

PFL Configuration 1 PFL Configuration 2

Extent Range Stripe Count Extent Range Stripe Count

[0, 128 MB) 1 [0, 128 MB) 1

[128 MB, 512 MB) 3 [128 MB, 2 GB) 12

[512 MB, 2 GB) 8 [2 GB, EOF) 32

[2 GB, EOF) 16

Performance Evaluation
Utilization Comparison – File-Per-Process

17Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

OST utilization: IOR in FPP mode and non-PFL layout (stripe count 8). OST utilization: IOR in FPP mode and PFL Configuration 2.

OSS utilization: IOR in FPP mode and PFL Configuration 1. OST Storage Utilization for a simultaneous IOR and HACC-
IO execution in FPP mode in PFL Configuration 1 and PFL
Configuration 2, respectively.

Performance Evaluation
Read and Write Performance Comparison

18Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Conclusion

• Inconvenient truth:
 Every time code is ported to a new machine or underlying file system is changed or

upgraded, users are required to make changes to maintain performance.

 Users need a good understanding of how and how much their application outputs
before tuning the striping pattern.

 Users also need to be familiar with the recommended best practices for parallel I/O and
need to be able to apply them efficiently.

• Current status of Lustre has potential for further improvement:
 Standard stripe allocators do not provide true load balancing yet.

 Lustre could benefit from a global statistics collection and feedback system.

 Write and read performance, but also the resource utilization could be improved
transparently for user applications.

19Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

Thank you for your attention.

Questions?

20Parallel I/O Optimization on Lustre: Best Practices and the Future • Sarah M. Neuwirth

