
Oleg Drokin

Confessions of a Gatekeeper

whamcloud.com

The beginning

► I started working as a Lustre developer in 2003, and in 2008 I began working onsite at ORNL as part
of the Lustre Center of Excellence there to support then newly deployed Jaguar system

► In 2011 ORNL reported a strange MDS race condition-crash happening about once every 2 weeks
• Only happened during some very heavy filesystem activity
• Complicated to collect debug data
• Did not want the crashes to repeat due to all the downtime

► It was clear we need to be able to tackle this on less important systems somehow
► One route was load/client simulator.
• This is now known as MDS echo client/mds-survey set of scripts

► The other – use racer (obviously) and try to load a single VM with it with modest number of clients.
• A lucky stroke here was also about locating many of the VMs on the same host and HT was also enabled
• Crashes came relatively quickly and the issue was identified relatively fast after that.

whamcloud.com

The wonders of CPU overcommit

► When you have multiple VMs competing for limited CPU cycles, host OS stops the “cpu thread” at
random to let other VMs run

► It’s obvious in hindsight, but this is the big part of the success of this technique:
• Inside the VM all CPUs appear normal
• But externally they are stopped for random time at random intervals, while others keep running
• This leads to great extension of race windows
• Even a single instruction race that is incredibly hard to hit normally, becomes very possible the more

overcommit is exposed

► For this to work well you need some heavy CPU load present somehow (ideally within the VMs)
► Important distinction here is then you need lots of RAM too, as otherwise VMs are swapped out and

generally all sorts of kernel protection mechanisms get into play

whamcloud.com

Debug kernels – the other important ingredient

► Linux kernel provides a bunch of extra debug mechanisms to ease development of kernel code
► Some of it are really expensive, some – not so much
► Some you must build with, some you can turn on at runtime
► Of the very important ones:
• DEBUG_PAGEALLOC - really slow, but most freed memory access, even read-only results in a crash
• Sleeping while atomic detection – shows problematic locking before it becomes a real problem
• Lock correctness checks

► Alas, it turns out not many developers run in this setup
• This includes distro developers
• And many Lustre developers

whamcloud.com

The happy ending and the beginning of new era

► The new setup yielded a crash about every 20 minutes with 10 VMs
• ORNL specific crash amongst them

► The newly found opportunity was too good to pass up
• The boiling pot was born
• Ad-hoc at first, but it quickly became a staple of integration testing

► Time to crash started to rise
• Eventually the metric became number of crashes per day

► Overall Lustre stability rose correspondingly with Lustre 1.8.x and then 2.x
► I tried the same approach on in-kernel NFS
• Immediately triggered a number of crashes
• Yielded some fun comments from kernel big wigs questioning whether anybody still uses NFS

► “Boilingpot” is now a staple of Lustre integration testing

whamcloud.com

The old ways

► CFS Lustre developers all got training in TSP process in ~2007
• Importance of proper multistaged design, code reviews and inspection, checklists
• We tried to implement it with mixed results

► The eventual process mostly settled on:
• Patch is submitted by a developer, gets into automated testing
• Many hours later the results are published
• Reviewers get to review
o Contrary to what TSP process requires, usually only if the results are sufficiently good

• Patches selected for landing – gets landed in ad-hoc manner
• Integration testing is performed at the tip of the branch
o If something broke – tough luck, everybody is affected.

► Boilpot is now a separate integration-testing step on a throw-away branch
• master-next and b2_12-next
• Reduced main branch breakage occurrences! significantly.

whamcloud.com

Static analysis at large

► Initially: “stupid computer” just highlights strange areas in the code for developer to review
► Today: “a tool for managers to measure code quality”
► Usage and commercial offerings shifted accordingly and for the worse
• It’s usually run every once in a while and the reports are often left to be triaged and fixed by junior people

► The end result is not useful
► Once the bug is in the codebase, it’s too late
• Developer has moved on to other things
• It becomes everybody else’s problem
• It could get deprioritized for later

► The proper way is to run the checks on every patch
• But it is not easy to do this with commonplace tools like Coverity

whamcloud.com

Static analysis at Whamcloud

► At Whamcloud we run static analysis at every patch
► The tool of choice: Smatch
• Free and opensource
• Targets Linux kernel
• Always on the bleeding edge of research in the area
• Produces easily parsable text output to tie into gerrit reviews by our tools

► Some false positives are OK
• Computers are stupid after all
• They get blacklisted not to annoy people needlessly
• They do work as anchors to increase review quality
• Important not to have too many still

whamcloud.com

Example of gerrit integration

whamcloud.com

Gerrit integration – fast turnaround

whamcloud.com

Test suite fragmentation and monoculture

► Out of sight – out of mind
• That’s how we can best describe the “non-binding” full testing
• If it’s not in enforced review testing – it will break. Probably already broken and nobody noticed yet

► Strong enforcement of ”all green” results is key to quality
• Some people think “it’s ok to mark known failures”, but I think that does not lead to robust code

► Even with that in place, surprising breakage sometimes occurs
► Tests and code were becoming “fine-tuned” to just run in the particular maloo config
• Change the config and suddenly all sorts of bugs crop up

► This was partially addressed by the “boilpot” being a vastly different setup
• Waaay too expensive being run as the very last step before landing the patch

whamcloud.com

Importance of easy access to information by devs

► Another sore point is getting developers everything they need and more at a glance
• Lustre is a complex system, it produces a lot of logs from multiple nodes during testing
• Physically infeasible for everybody to review every single line of them

► Strong search and cross reference abilities is a must
• What successful tests produce error messages?
o “command not found”, “invalid syntax”, “file not found”, ….

• Way too many as it turns out

► Crash information
• Automating gathering of useful information from crashdumps to save time

► Automated triaging of issues based on all the above and more
• To better highlight new problems

whamcloud.com

Test infrastructure – a different approach

► If you want something to be done well, do it yourself.
► Frustrated by existing solutions, I set out to create my own with some simple goals
• People are lazy and impatient. Give them useful results. Fast!
o Compile issues under 5 minutes
o Generally fatal problem under 10 minutes
o Overall bill of health under 2 hours with all tests we have, no exclusions

• Give them more data than they need in convenient locations
o Compile error? Show it as review comments
o Crash in new code? Show it in place. Immediately.
o Pre-parse the logs to highlight messages of interest in test results

• Minimize “useless chatter”
o Who cares if we started 10 buildjobs for 10 different distros? Surefire way to people route all gerrit traffic to trash!

• Context aware (only test what’s changed)

► Human-guided compliance
• I was wrong on this. We have a whole bunch of flaky tests. People hate too much flakiness

whamcloud.com

Testing at scale with minimal resources

► 2 hour turn-around time goal, a pie in the sky?
• Split testing into one session per testscript
o The long testscripts we have, split them into parts

• Lots of VMs to run testscripts in parallel.
• How many is “lots”?
o Single build starts 27 * 2 + 1 = 55 sessions

• 2 nodes per session at 4G RAM per node = 440G
o We need servers with lots of RAM

• We want at least 4 sessions running in parallel
o At least 200 VMs

• Will everything in place currently testing takes ~2:40 + 10 minutes

► Old opencompute nodes are cheap: $100 for 2 with chassis
• + 4x E5-2660v2 (10 cores) = $400 + 512G RAM = $1000
• ~$1.6k for 80 parallel test sessions

Setup v1

whamcloud.com

Utilization

whamcloud.com

Sample interaction

What the developer see in gerrit

whamcloud.com

What I learned

► People take the path of least resistance
• Boy oh boy was the CMU “TSP” course misguided!
• Always assume the worst and try to use automation to guard against it

► Don’t decouple QA and developers
• They are different people with different goals.
• They often have different ideas of what’s needed and what’s not and how much is it needed
• They have different ideas about what’s possible and what’s not

Overflow

whamcloud.com

Quick compilation – mission possible

► Many areas of build process are single threaded – a bunch of parallel cpus does not help
► Configure process for Lustre is very long
• Centos7 – 3 minutes, rhel8 – 9 minutes(!)
• Solution: cache configure results across runs if nothing in autoconf files changed (use md5)

► RPM generation is slow
• Skip rpm generation, instead just create squashfs image of build tree to run out of
o Uses multiple CPU threads

► End result: 15-20 minute build time reduced to usually 1-2 minutes

whamcloud.com

Failure rate tracking

► To track flaky tests – record every failure for later comparison.
• Test, subtest, failure message text, fstype

► Add “same failure” output to failed results
• Helps people to better gauge if the failure is likely theirs or not

► Does not work all that well for tests with variable error messages (duh!)

whamcloud.com

Crash information extraction

► Crashdumps host a whole bunch of useful data, but it’s hard to get to it
• Need to grab debug binaries, have right tools compiled, find and download the crash dump,…

► Save time! Every crash (and timeout) gets automatic processing:
• Extract backtraces of all tasks
• Cross reference the crash backtrace against a database of known crashes
• Extract Lustre debug logs
• TBD: extract lock state and memory information
o Thanks to Cray for contributed pycrash scripts

whamcloud.com

Recognizing the known crashes

► Same crashes have often somewhat different backtraces
• Different addresses, different garbage on the stack, …

► Unique elements:
• The crashing reason: GPF/NULL pointer, OOM, NMI, …

• Crashing function name

• Stable backtrace with function names only, addresses stripped

• Test name (if any)

► Additional useful elements for additional testing
• All kernel messages since start of last test

• Unabbreviated backtrace

whamcloud.com

Better context awareness

► Did you ever forget to add Test-params?
• In majority of cases why do I even need to? If I only changed sanity.sh why run anything else?

► Gerrit provides an easily accessible list of files changed – use it
• Create list of files to tests mapping
• Build-only changes don’t even need any tests
• Areas we cannot test at all due to lack of hardware (Gemini LND)
• ldiskfs-only, zfs-only, individual test-scripts

► Now we can also guard against misguided “Test-Param: trivial” instances
• Sadly we’ve seen some abuse of that

► Future stretch goals:
• Detect whitespace-only/comments-only changes
• See individual tests added/changed and ensure they are run/ highlight when they fail

