
1 

Lustre Interface Bonding 

Olaf Weber 
Sr. Software Engineer 



2 ©2015 SGI 

• A long-standing wish list item known under a 
variety of names: 
– Interface bonding 

– Channel bonding 

– Multi-rail 

• Fujitsu implemented o2iblnd-level code and 
made it available to the community 

• This proposal is a collaboration between SGI 
and Intel 

• The goal is to land multi-rail support in Lustre 

2 

Interface Bonding 



3 ©2015 SGI 

Why Multi-Rail? 

SGI® UV™ 300: 32-socket NUMA System 
SGI® UV™ 3000: 256-socket NUMA System 



4 ©2015 SGI 

Based on feedback for the Fujitsu code 

• Mixed-version clusters 

• Simple configuration 

• Adaptable 

• LNet-level implementation 

4 

Design Constraints 



5 ©2015 SGI 5 

Example Lustre Cluster 

MGT 

MDT 

OST 

OST 

MGS Client 

MDS 

OSS 

OSS 

Client 

UV OSS OST 



6 ©2015 SGI 6 

Mono-rail Single Fabric 

MGT 

MDT 

OST 

OST 

MGS Client 

MDS 

OSS 

OSS 

Client 

UV OSS OST 

o2ib0 



7 ©2015 SGI 7 

LNets in a Single Fabric 

MGT 

MDT 

OST 

OST 

OST 

o2ib0 
 
 
 
 
 

o2ib1 

o2ib2 

o2ib3 

MGS Client 

MDS 

OSS 

OSS 

Client 

UV OSS 



8 ©2015 SGI 8 

Multi-rail Single Fabric 

MGT 

MDT 

OST 

OST 

OST 

MGS Client 

MDS 

OSS 

OSS 

Client 

UV OSS 

o2ib0 



9 ©2015 SGI 9 

Multi-rail Dual Fabric 

MGT 

MDT 

OST 

OST 

OST 

MGS Client 

MDS 

OSS 

OSS 

Client 

UV OSS 

o2ib0 

o2ib1 



10 ©2015 SGI 10 

Mixed-Version Clusters 

A Single Multi-Rail Node 

Peer Version Discovery 

10 



11 ©2015 SGI 11 

A Single Multi-Rail Node 

MGT 

MDT 

OST 

OST 

OST 

MGS Client 

MDS 

OSS 

OSS 

Client 

UV OSS 

o2ib0 



12 ©2015 SGI 

• There is no LNet end-to-end versioning 

• LND versioning does not work across LNet 

routers 

• The LNet ping protocol can be used. 

 

A set bit in lnet_ping_info_t::pi_features 

indicates multi-rail capability. 

12 

Peer Version Discovery 



13 ©2015 SGI 

A simple version discovery protocol: 

1. LNet keeps track of all known peers 

2. On first communication, do an LNet ping 

3. The node now knows the peer version 

 

The ping reply also contains a list of the 

interfaces of the peer. Can we use that? 

13 

Peer Version Discovery 



14 ©2015 SGI 14 

Easy Configuration 

Peer Interface Discovery 

Configuring Interfaces on a Node 

Dynamic Configuration 

14 



15 ©2015 SGI 

• Peer Version Discovery gives a node the 

list of the peer’s interfaces. 

• For the simple cases, this is all a node 

needs to know about a peer. 

• The peer also needs to know the node’s 

interfaces. 

 

Push the node’s interface list to the peer. 

15 

Peer Interface Discovery 



16 ©2015 SGI 

The push would be like an LNet ping 

• Except LNet ping uses LNetGet() 

• The push uses LNetPut() 

 

The push should be safe: 

• A downrev LNet router can forward a push 

• A downrev peer returns “protocol error” 

16 

Peer Interface Discovery 



17 ©2015 SGI 

How does a node know its own interfaces? 

Similar to current methods. 

• LNet module options line 

– networks=o2ib(ib0,ib1) 

– networks=o2ib(ib0[2],ib1[6])[2,6] 

• DLC uses the same syntax 

– It uses the same in-kernel parser 

17 

Configuring Interfaces on a Node 



18 ©2015 SGI 

What about credits? 

• Credits are assigned per interface. 

• This applies to both local and peer credits. 

• More interfaces – more credits. 

• The defaults of tunables are unchanged. 

18 

Configuring Interfaces on a Node 



19 ©2015 SGI 

Adding an interface: 

1. Enable new interface 

2. Push updated interface list to peers 

 

Removing an interface: 

1. Push updated interface list to peers 

2. Disable existing interface 

19 

Dynamic Configuration 



20 ©2015 SGI 20 

Adaptable 

Interface Selection 

Extended Routing 

Additional Considerations 

20 



21 ©2015 SGI 

Select a local-peer interface pair to send. 

• Direct connection preferred 

• LNet network type (anything but TCP) 

• NUMA criteria 

– Memory locality 

– Process locality 

• Local credits 

• Peer credits 

21 

Interface Selection 



22 ©2015 SGI 

Fabrics can have a 
complicated topology. 

 

• Preferred point-to-
point connections 
within an LNet 

 

• Prefer an LNet over 
another (for a subset 
of its NIDs) 

Routing Enhancements 

22 



23 ©2015 SGI 

Try to be NUMA friendly. 

• Nodes do not know each other’s topology 

• An RPC is a request-response pair. 

• Remember origin interface of request 

• Prefer origin interface for response 

 

23 

Extra Considerations 



24 ©2015 SGI 

On a send failure, a message can be resent 

on another local-remote interface pair, until 

all possibilities have been exhausted. 

 

This adds some extra resiliency for network 

failures to Lustre. 

24 

Extra Considerations 



25 ©2015 SGI 

Node failure introduces some corner cases. 

• Reboot with downrev software 

– Upper layers (ptlrpc) do detect node failure 

– They can inform LNet so it can reset its state 

• NID reuse by a different node 

– Node identity is now separate from NID 

– Special NIDs on the loopback network? 

 

25 

Extra Considerations 



26 ©2015 SGI 26 

LNet-level Implementation 

Implementation Notes 

26 



27 ©2015 SGI 

Datastructure changes 

• Split lnet_ni into lnet_lnet and lnet_ni 

• Split lnet_peer into lnet_peer and 

lnet_peerni 

• Track preferred routes in lnet_net 

• Track preferred lnet_ni in lnet_peerni 

(derived from the routes info in lnet_net) 

27 

Implementation Notes 



28 ©2015 SGI 

Use LNET_NID_ANY for the self parameter of 

LNetGet() and LNetPut() when sending an RPC 

request. This tells LNet to use whichever local-

remote interface pair it seems most suitable. 

 

Use the originator NID when sending an RPC 

response. This tells LNet that this particular 

local-remote pair is strongly preferred. 

28 

Implementation Notes 



29 ©2015 SGI 

The Memory Descriptor can be extended 

with NUMA hints, to give LNet NUMA-

specific information in selecting a suitable 

local interface. 

 

Then LNet can select a remote interface for 

the peer that can be reached from the local 

interface. 

29 

Implementation Notes 



30 ©2015 SGI 

1. Split lnet_ni 

2. Local interface selection 

3. Split lnet_peer 

4. Ping on connect 

5. Implement push 

6. Peer interface selection 

7. Resending on failure 

8. Routing enhancements 

30 

Implementation Notes 



31 ©2015 SGI 31 

Feedback & Discussion 

Q&A 

 

olaf@sgi.com 

31 



32 32 


