DDN RTDS(LU-9809)

STORAGE Real-Time Dynamic Striping

Li Xi

DataDirect Networks



Why RTDS(LU-9809)?

» Current ways of controlling file striping are not
enough
» Default striping

o Only have a fixed policy based on free space
o Not able to be controlled from outside

* OST pool based striping
o Can configure different stripes for different pools
o Still not able to control the details of the policy

* Create file with specific striping using flag O _LOV_DELAY_CREATE
and ioctl(LL_I0C_LOV_SETSTRIPE)

o Needs modification of the application

» RTDS: a way to better control the striping

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra d s ma yb I|m da th i p rty of other: ddn com

Any statements or re p entatio und future events ect to chan.
STORAGE ¢ i



Design of RTDS(LU-9809)

» Each OST has a configurable weight

» When allocating an object, RTDS randomly
choose an OST

» The probability of choosing a given OST is
proportional to the OST's weight

» The administrator can configure the weights of
all OSTs in real-time
# cat /proc/fs/lustre/lod/vm1-MDT0000-mdtlov/rtds_weight
0=1,1=1
# echo "0=1,1=2" > /proc/fs/lustre/lod/vm1-MDT0000-
mdtlov/rtds_weight

DDN

STORAGE



Implementation: RTDS Tree

Random number WIi]: Weight of OST i
between 0 and S[7] S[i]: W[0] + W[1] + ... + W]i]

<S[3] >=3[3]

<S[1] >=S[1] <S[5] >=S[5]

<S[0] >=3[0] <S[2] >=3[2] <S[4] >=S[4] <S][6] >=3[6]

TTTTTTT

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra d s ma yb I|m d a th i p rty of other ddn com

Any statements or re p entatio und future events ect to cha g

OST OST

STORAGE



OST Pool + RTDS

One RTDS tree is generated for each OST pool

Pool is currently inherited from parent, we want to choose pool according
to a policy

Each OST pool has a series of match rules

File will locate on an OST pool if the rules of the pool are matched

Matching rules are based on file attributes like UID, GID, NID, Project ID,
Job ID etc.

>
>
>
>
>

Match rule Match rule Match rule
Match rule Match rule Match rule

Policy 1 Policy 2
= OST pool1 =

OST pool2 Polley S osT pool3

®
DDN © 2016 DataDirect Networks, Inc. * Other names and bra d s ma yb | aime d th i p rty of other ddn com

STORAGE

Any statements ol resentatiol und future events ect to cha g



Relative Weights Between OSTs

» What is relative weight?

* When a OST is being selected as one of the stripes of a
file, the weight of another (or the same) OST will be
updated accordingly in the next round

» WI[i]: Weight of OST i
» RW(i, j)
* Describes how OST i affects OST j

 When OST i is being selected, then before next round, WI[j]
will be changed to WJ[j] * RW(i, j)

DDN’

STORAGE



Implementation of relative weight

» Allocation of file with multiple stripes

1. Copy the weight array from the public weight array. All
allocation processes shares the same RTDS tree though.

» 2. Allocate an object according to the current weight array

- 3. Update the private weight array according to the relative
weights

* 4. Go to step 2 to allocate the next object

» Allocation of file with only one stripe
» Use shared public weight array, no need to copy one

DDN’

STORAGE



Configuration Examples of
Relative weight

» Set RW(i, i) to 0, to avoid allocating more than one
objects on OST i for a single file

» Set RW(i, j) to 1 when i !=], if the OSTs are
considered unrelated

» Set RW(i, j) <1, if OST i and OST j are on the same
0SS, and we want to try to avoid locating two
stripes on the same 0SS

» Set RW(i, j) > 1, if we want to locate the next object
on OST j which have the same specification(e.g.
SSD/HDD based OSTs) with OST i

» Usual values of RW: 0, 1/2, 1, 2, INFI, etc

DDN

STORAGE



Daemon of weight adjusting

» A daemon should be monitoring the system and
adjusting the weights of all OSTs from time to time

* The weights will be adjusted according to free spaces, free
bandwidth, inodes, etc.

* The weights will be updated every one minute or so
« Smart algorithms or Al can be used for the dynamical adjusting
process
» Example of dynamical configuration adjustment
* LIME: Lustre Intelligent Management Engine
* https://github.com/DDNStorage/Lime
* Collects the real-time performance statistics of a job

« Changes the TBF rates every one second to provide QoS
guarantees or enforce performance limitations

DDN’

STORAGE



Use cases

» Quick space balance when adding new OSTs
» Configure empty OSTs with higher weights than full OSTs

» Load balance between OSTs
 Configure idle OSTs with higher weights than busy OSTs

» Avoid to use degraded OSTs
» Configure the OSTs that are doing RAID rebuilding with zero
weight
» Reserved quick OSTs for high-priority jobs
» Separate OSTs into OST pools according to speed
 Define matching rules to separate jobs by priority levels

» Advanced QoS management together with NRS
TBF policy
* The bandwidth of OSTs can be allocated by using TBF and
RTDS together

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra d yb I|md h i p rty of other ddn com

Any statements or re| p entatio und future events ect to chan g

STORAGE



11 Advices?

» https://jira.hpdd.intel.com/browse/LU-9809
» https://review.whamcloud.com/28292

®
DDN © 2016 DataDirect Networks, Inc. * Other names and bra d myb I|md th i prtyfth ddn com

Ayltmnt p entatio und future events ect to hg

STORAGE



Thank you!

®
D D N © 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. d d n CO I I I

Any statements or representations around future events are subject to change.
STORAGE




