
Li Xi
Sept 2019

Parallel E2fsck



whamcloud.com

Background

► LU-8465
► 1 PB+ OST is coming
► On 1PB OST with 105M inodes, e2fsck time:
• Pass 1: 3771
• Pass 2: 98
• Pass 3: 0.02
• Pass 4: 12.94
• Pass 5: 66.93

Time cost for each stage

Pass 1 Pass 2 Pass 3 Pass 4



whamcloud.com

Need to Improve Pass1 Step

► Pass 1 takes 95% of the e2fsck time 
► Why Pass 1 is slow
• Walk through the entire inode table
• On each inode
o Read and check the inode attributes
o Check the blocks used by each inode
o A lot of inserting and searching of data structures 

► How to improve
• Fortunately, the check of each inode is almost independent
• Different threads can check different inodes in parallel



whamcloud.com

Challenges & Solutions

► The result of Pass1 will be used by Pass2/3/4 too
• Merge step is needed after threads finish

► Synchronization will be needed between threads in some cases
• Bad blocks should be synced to avoid using them
• Used blocks should be synced to avoid allocating them in multiple threads

► The threads of Pass1 shouldn’t change disk at the same time
• Lock need to be held to avoid any conflict of writing disk

► Correctness is very hard to confirm
• Wrong e2fsck would cause/escalate data corruption
• Need to pass all regression tests of e2fsprogs
• Fortunately, there are already 186 regression tests
• Strict review



whamcloud.com

Design

Start

Thread 0 Thread 1 Thread 2 Thread 3Parallel scan of Pass1

Copy of contexts

Merge

Pass2

Pass3

Pass4

Merge of contexts



whamcloud.com

Steps towards Parallel E2fsck

► Step 1: Proof of concept: Done
• Do not care whether the patch is clean or not
• Get performance number to confirm the performance is improvable

► Step 2: Multiple threads run sequentially: Woking on
• Merge the pass1 results from multiple threads properly
• All regression tests need to be passed no matter how many threads
• Pass the tests then thread number is 1, 2, 3, … n

► Step 3: Multiple threads run in parallel: Future
• Threads need to sync with each other from time to time
• Tests might not be able to be passed any more
• Any way to pass the tests

► Step 4: Review, test and merge: Future
• Need strict review to make sure nothing breaks
• Codes need to be rewritten for better quality

Harder and harder



whamcloud.com

Sequential run of threads for regression tests

Start

Thread 0

Thread 1

Thread 2

Thread 3

Merge

Output and result should be exactly
the same with original e2fsck



whamcloud.com

Current status

► 40+ patches, a lot more is coming

► Speedup for more than X4 times, from 3771 seconds to 800 seconds

► More speedup is possible with better load balancing and more threads

► Bigalloc feature might help a lot too

► ”libext2fs: optimize ext2fs_convert_subcluster_bitmap()” patch improves E2fsck speed a lot

► All tests can be passed with single thread, except occasional crash because of 



whamcloud.com

Thought & Concerns

► E2fsck codes really need to be cleaned up
• A lot of similar codes that could be put into shared library, e.g. binary search
• Cleanup is hard because things can be easily broken

► E2fsck correctness is tooooo critical
• Review of the patches needs to be really careful
• Not able to reuse the regression tests for parallel fsck

► Any more ways to test the correctness?
• Regression tests that already exists
• Valgrind command to detect memory leak
• E2fsck on huge Ext4 with hundreds of millions inodes to confirm no performance regression.



whamcloud.com

New ideas

► The parallel fsck can be only used for check
• If any problem is found, restart to use single threads check

► Several choice to fix problem
• Thread 0 fix all the found problems
• Fix the problem at the thread that found it
• Fix the problem after all threads join




