
Parallel I/O (pio):

Fulfilling the promise

LAD 2017 Copyright 2017 Cray Inc.
1

Parallel I/O (pio)

● LU-8964: Added parallel tasks framework & pio
● Reaction to slower many core processors (KNL)
● Split I/O at cl_io layer (cl_io_loop), do in parallel
● Parallelizes page submission, allocation, & data

copying (all the CPU intensive parts)
● Off by default...

LAD 2017 Copyright 2017 Cray Inc.
2

Performance

● Doesn't perform very well in practice
● Hurts performance for many real workloads
● Hence, off by default
● See Dmitry's LUG presentation

LAD 2017 Copyright 2017 Cray Inc.
3

Goals

● 1. On by default

● “Do no harm” - don't make any workloads worse

● Help enough (CPU cycles aren't free)
● 2. Performance = normal multi-process shared file

● Clear yardstick for progress
● 3. (Bonus!) Improve multi-process shared file

● Helps pio and single shared file...

LAD 2017 Copyright 2017 Cray Inc.
4

So, what makes it slow?

● 1. Too many processes

● Does a process per “stripe chunk” right now (cl_io_loop
iterates once per stripe chunk)

● Larger I/Os lead to contention (64 MiB == 64 processes!)
● 2. Too little data per process

● “stripe chunk” is only stripe size bytes of data
● 3. Scheduling policy

● Padata framework binds threads to specific CPUs

● Problematic for any workload, but especially HPC

LAD 2017 Copyright 2017 Cray Inc.
5

So, what makes it slow?

● 4. Plays havoc with readahead, hurts reads

● Re-write readahead (LU-8964 – Seems to work well)
● 5. Overhead

● Unnecessary serialization (completion order for
different parts of I/O doesn't matter)

● Task startup time – padata is high overhead

LAD 2017 Copyright 2017 Cray Inc.
6

What can we do?

● Don't use padata (can't avoid per-CPU binding, high
overhead to start each worker)

● Remove unnecessary serialization (task completion
order for I/O doesn't matter)

● Limit process count per file
● Limit total pio process count
● Split data equally between # of processes, but only

above a minimum size

LAD 2017 Copyright 2017 Cray Inc.
7

Digression: Padata

● Existing in kernel parallelization framework
● Chooses a random CPU, puts item on per-cpu queue &

starts worker (if not already started)
● Workers always explicitly bound to CPUs (: ()
● Powerful parallel execution & serial completion

primitives
● Used by networking (packet encryption)
● Designed for many, many small work units (TCP

packets!) and a dedicated system

LAD 2017 Copyright 2017 Cray Inc.
8

Padata Conclusion

● Padata is great... But probably not for us.
● Lots of overhead
● Switch to kthread_run and we're ~20% faster
● Switch to pre-created daemons is ~30% faster
● Less Complexity – Drop a lot of code going to

kthread_run or daemons

LAD 2017 Copyright 2017 Cray Inc.
9

What have I done? (LU – Not yet.)

● Switch to pre-created ptask daemons
● Limited total number of daemons
● Removed serializaton at end of work
● Chunk data evenly above minimum size
● Limit processes per file

LAD 2017 Copyright 2017 Cray Inc.
10

	Agenda
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

