25

LUSTRE ADMIN
DEV WORKSHOP

I i |||
. || 1||-
30 Sept 1

Whamcloud

Lustre Trash Can Undelete (TCU)

Yingjin Qian, Oleg Drokin, Andreas Dilger
September 2025

STORAGE

Background & Objectives (Why TCU?) S:B
Whamcloud

» The Problem:

* Accidental file deletion by users or applications leads to permanent data loss and service
interruption:

*"rm -rf” command with wrong filenames/wildcards (“fat finger mistakes”)
* Script errors
* Malicious deletion
» The Solution:
* Provide a "second chance" for deleted files

 Store deleting files temporarily by moving them to a hidden holding area before
permanently deleting them

* Delayed purging of deleted files by policy or explicit commands
* Allow marking files/directories to avoid trash (e.g. temporary files)
» Critical User Benefit:
* Provide a way for regular users to restore or retrieve deleted files immediately
* Drastically lower the number of data recovery tickets to administrators
* Files can be recovered from trash even if created+deleted after last backup

Shasiiiclpud:com

)

Trash Can/Undelete Core Features Overview °7
Whamcloud

> “Delete” effectively becomes “Rename” on MDS

* Upon last unlink files are not immediately purged but renamed to hidden . lustre/trash/MDTxxxx
directory

* Applies to all forms of file deletion operations, not just “rm” or “unlink()” on updated clients
» File Restoration (Undelete)

* Users can restore files from trash to their original location or specified path
» Permanent Deletion / Empty Trash

* Users/admins can permanently delete files from Trash Can to free the used space
* Support emptying all deleted files at once

» Trash Can Space Usage
* Deleted file quota space usage is hidden from users by default
» Retention Policy
* Files are kept in Trash for a configurable "Grace Period" before cleanup

» Admin can enable/disable Trash Can feature on whole FS, users can disable on specific directory/files

whamcloud.com

Virtual “. Trash” Directory & User Access

» Concept: Avirtual ”. Trash” directory is available in every filesystem directory

* Allow users to easily browse deleted files/directories under the current subdirectory in
the Trash Can

* Access deleted files/dirs for recovery via standard POSIX API

* Deleted files can be accessed in read-only mode to avoid (ab)use by users/applications
» User Experience: Easy access to deleted files via normal access methods

* "1ls —la $dir/.Trash” lists files deleted and moving into Trash Can for the directory $dir

* If no files are deleted from a directory, its ”.Trash” directory does not exist (ENOENT)

* Standard POSIX APIs (readdir(), stat()) work as normal on .Trash and deleted
files/subdirs therein

* Can use any command-line tools (1s, rm, rmdir, etc.), or file browsers if mounted on
workstation

» Implementation: Essentially a shortcut to the stub directory with parent directory’s pFID name

“.lustre/trash/MDTxxxx/NODEMAP/UID/pFID” (NODEMAP/ and UID/ optionally
configured)

» Special handling for striped and remote directories
- Access is unified through the virtual ”.Trash” directory, transparent to the user

File organization under TCU fg}

Whamcloud
» Usually configured via “mdd.*.trash_can_type”
» “plain”: all stub dir pFID are directly created under “.lustre/trash/MDTxxxx"
» “uld”: Per-User Trash Can (default)

* Per-User “.lustre/trash/MDTxxxx/UID"”, owned by UID, mode 0700

* Avoid world readable access to deleted files on Trash Can

* De-conflict files/directories of the same name created by users

* Avoid exposing files to other users that may be private

* Allow tracking space usage more clearly of each UID

* A user’s data can be found and purged more quickly if they are exceeding their quota

» NODEMAP: Per-Nodemap (optionally + per-user) Trash Can

- NODEMAP TCU type can only (and always) be set from clients that are part of a nodemap

* Cannot configure via “mdd.*.trash can type”

* Divide into two categories according to the “mdd.*.trash can type” setting
0“plain”: lustre/trash/MDTxxxx/NODEMAP
0“uid”: lustre/trash/MDTxxxx/NODEMAP/UID

whamcloud.com

The Deletion Process: Step-by-Step Wha"gx? .
mciou

» Onunlink()/rmdir () or unlink via rename() during the last unlink

1. Trash Can directory path depends if unlink sent from client in a nodemap or not

a) Nodemap: create local “.lustre/trash/MDTxxxx/NODEMAP” according to nhodemap name

b) UID: create .lustre/trash/MDTxxxx/NODEMAP/UID" (if needed) and mdd.*.trash can type=uid
2. Stub directory Setup: Create the pFID stub directory if not exist:

a) Plain TCU type: Under “.lustre/trash/MDTxxxx/NODEMAP/pFID"

b) UID TCU type: Under “.lustre/trash/MDTxxxx/NODEMAP/UID/pFID"
3. Move/Migrate the victim file or directory object into the pFID stub directory

4. Change the original UID/GID/PROJID of file with Trash Can UID/GID/PROJID and update
the quota accounting
a) mdd.*.trash can uid
b) mdd.*.trash can gid
c) mdd.*.trash can projid
5. Save the original UID/GID/PROJID and timestamp to “trusted.unrm” XATTR which can
use for unrm/restore

6. Set LUSTRE _UNRM FL=FS UNRM FL flag on the file moving into Trash Can

whamcloud.com

Quota & Space Accounting ()

» Quota Transfer: Upon deletion, file’s original UID/GID/PROJID changed to dedicated Trash Can IDs
* User View: their quota usage decreases and reflects only “in use” files

* Trash Can View: quota usage is tracked under
trash can uid/trash can gid/trash can projid

* Default value for mdd.*.trash can [uid|gid|projid]=-2 means “deleted files change to
these IDs”

* Optionally mdd.*.trash can [uid]|gid|projid]=-1 (original) means “keep original file IDs
in Trash”
0 Respective UID, GID, and/or PROJID on the deleted file object is unchanged when it is deleted
0 Quota continues to be tracked against original IDs for deleted files
O In this case it Is up to user to manage their own Trash Can usage to reduce quota usage
0 To handle case where users abuse Trash Can to store files in rotation to avoid quota limits
» getattr() on deleted files has original ACL, and UID/GID/PROJID from “trusted.unrm” XATTR

* Allow file access/cleanup by original user, prevents access by other users

» Undelete/restore files in Trash Can
» Restore the original UID/GID/PROJID saved in “trusted.unrm” XATTR during rename
- Quota accounting.is.updated atomically. by the backend OSD when |Ds are changed
- Delete “trusted.unrm” XATTR from restored file

https://jira.whamcloud.com/browse/LU-19143

Quota & Space Accounting (cont’) S:}

Whamcloud

» df/statfs() reporting
* "df” shows free inodes/space as if there were no files in the Trash Can

* The space/inodes used by Trash Can are added to the free space via trash can projid
quota

« “1fs df [--notrash]” also adjusts free inodes/space for space used by Trash Can
« “1fs df --trash” shows the actual free inodes/space without adjustment for Trash Can
usage
» Nodemap Interaction
* Allow configuring UID/GID/PROJID to which files in the Trash Can are assigned
» Can set per-nodemap trash can uid, trash can gid and trash can projid parameters
* These IDs are within the ID offset range of the nodemap
* Allow nodemap project quota group to account for all space used by the nodemap

* This isolates Trash Can usage for each nodemap from the regular UID/GID/PROJID of the
nodemap users
0 A nodemap mounts with Lustre fileset, with 1lite.*.statfs project=1 parameter set (default)
0 PROJID is set on the fileset with PROJINHERIT ﬂag

whamcloud.com

)

User Commands & Usage *v
Whamcloud

» Configuration (Administrator):
* lctl set param mdd.*.trash can enable={0,1}
* lctl set param mdd.*.trash can {uid|gid|projid}=ID

» User Commands:

* List files/directories deleted from current DIR: ls DIR/.Trash

- Display state of Trash Can: Lfs trash state TARGETDIR

* Restore FILENAME to parent DIR: Lfs trash unrm
DIR/.Trash/FILENAME

* Partially restore file/dir to different parent: Lfs trash mv

DIR/.Trash/SRCDIR TGTDIR

* Permanently delete files in/under DIR from Trash: 1fs trash clean [--
recursive] DIR

or directly via POSIX API: rm [-rf]
DIR/.Trash/FILENAME

- Empty Trash for a specific user: Lfs trash clean --user USER

)

Make trash/ directory visible in client namespace 7
Whamcloud
» Deleted files moved to “. Llustre/trash/MDTxxxx" 1lustre directory
* Local directory on each MDT where the files are located MD‘I/OOOO
* Avoids cross-MDT rename overhead/locking | MDT index
trash/
» Configure trash directories all MDTs after MDS stack setup: MDTO000
* Trash directories for MDTs are created (if not
already present) 3
* Done after MDS stack setup and MDT has finished MDT0000 MDTOOO1 .. MDTxxxx/
recovery MBTO MBT1 - MDTx
* Visible in ROOT directory by path local remote emote
“.lustre/trash/MDTxxxx"
* Can be accessed via normal POSIX I/O interface
from clients

0"”.lustre/trash/MDTO000” is a local directory for MDTO

0“,lustre/trash/MDTxxxx" for other MDTs are remote
subdirs

whamcloud.com

Moving a regular file into trash

» “Last unlink” for file moving into trash will lookup (or create) a directory named with its parent’s FID
» This is the stub dir “pFID"” in the MDT Trash Can directory where the file inode is located
» The regular file is moved into this pFID subdirectory on Trash Can

“dir” on MDT1 with pFID: 0x200034021:0x1:0x0; “a” is a deleting regular file under
Ol%’ht/fsl/dl/dir .lustre/trash/

- | MDTEOO1/

delet i
e e Lcreale/looup PR SN 2shy. 9x200034021:0x1:0x0/ Stub dir

2. move file “@” into trash l
‘Illlllllllllllllllllllllllllllllllllllll"’ a

Access trash from Lustre mountpoint on a client: Access via “. Trash” virtual directory on a client:
ls —R /mnt/fsl/.lustre/trash/MDTO001 # ls —R /mnt/fsl/d1l/dir/.Trash

. lustre/trash/MDT0001/0x200034021:0x1:0x0 /mnt/fsl/d1l/dir/.Trash/a

. lustre/trash/MDTO001/0x200034021:0x1:0x0/a

)

Migrate a "undeleted” directory into Trash Can 7

/mnt/fslPath: /mnt/fsl/d/dir/a Whamcloud
| d/ FID: 0x200034021:0x1:0x0

|_dir/ FID:
@X2@@@34@2u1n1@1x : Ox0 rmdir
|—a -I- /€ ~1 /A /A3 v/~ / L /£
iusf?gy%ﬂé h/ RN %4%7 rash/
MDTOOO1/ MDTOOO1/
pFID for "dir/” 0x200034021:0x2:0x0 0x200034021:0x1:0x0/ Create new pFID
stub for "d/”
R
,n:)”nfne PFID g, .'
a W pare tStuZIr dir/

a

» |If deleting parent directory was previously empty, the operation is same as deleting a regular file
» When directory with pFID-named stub in trash is deleted, rename pFID stub to its original name

» Move into new pFID stub directory for its parent in trash
* Replicate its xattrs like crypt, selinux, etc. to preserve access permissions, fscrypt state,

user xattrs, etc.

)

Advanced Topics & Special Cases 7
Whamcloud

» LUSTRE NOTRASH FL/FS NODUMP FL Attribute (LU-18958)

* Files or directories can be marked with the NOTRASH flag: chattr +d FILE; chattr —d
FILE

* Objects with this flag bypass Trash Can completely, destroyed immediately upon the last
unlink

* ldeal for directories with temporary files, or sensitive files that should not be recovered

» Repeated deletion of file/dir with same name and directory (LU-19239)
* Configurable whether only oldest or newest file is saved, or unique name is created
* Can append a timestamp to the filename in Trash to help identify file version
e.qg. file.2025-04-03-00:11:24, file.2025-04-03-01:32:17

* Configurable upper limit on versions to prevent trash from being overwhelmed by short-
lived files (TODO)

» Deleting symbolic links (symlink) (LU-19303)

* Treated as reqgular files. Link target (path) is preserved

* Deletion and restoration process is same as reqgular files
» Deletion via rename () operation (LU-19258)

i

» ~ i m

whamcloud.com

https://jira.whamcloud.com/browse/LU-18958
https://jira.whamcloud.com/browse/LU-19239
https://jira.whamcloud.com/browse/LU-19303
https://jira.whamcloud.com/browse/LU-19258

)

Further Development 7
Whamcloud

» File overwrite viaopen (0 TRUNC) /truncate(0) (LU-19259)
* Allow moving data deleted via truncation into Trash Can
* Create a new temporary file on MDT with new OST objects in the Trash Can
* Copy attributes/xattrs from current file to temporary file
* Use existing layout swap functionality to swap objects and avoid data copy
* New data written transparently to new OST objects on old MDT inode

» Cleanup files from Trash Can for nearly full FS
* Need to automatically clean up Trash Can when filesystem nearly full or files are too old
* Scan MDT or OST devices for files in Trash Can via policy engine
* Check TRASH and NOTRASH attributes on files (both MDT and OST)

* Check the original UID/GID/PROJID and deletion timestamp stored in “trusted.unrm”
XATTR

* Choose candidate files and/or directories to be purged from Trash Can to free up space

» Potentially via MDS kernel thread for “basic/emergency” policy (e.g. delete oldest pFID
directory tree)

» Userspace policy engine for more sophisticated policy (age/space by user/project,

whamcloud.com

https://jira.whamcloud.com/browse/LU-19259
https://jira.whamcloud.com/browse/LU-19259
https://jira.whamcloud.com/browse/LU-19259
https://jira.whamcloud.com/browse/LU-19259

S

Summary v
Whamcloud

» Lustre Trash Can Undelete (TCU) enhances data protection and operational efficiency for Lustre

» TCU Core Value:

- Data Protection: Significantly reduces risk of data loss from accidental or malicious
deletion

* User Experience: Provides a familiar, convenient and user-friendly "undelete" operation

- Operational Efficiency: Reduces administrative interaction and overhead for data
recovery

» Limitations:
* Hardlink deletion, truncate, overwrite does not trigger Trash Can functionality
* May have negative impact on bulk unlink performance

» Current Status:
* Feature under active development (LU-18456)

vihamclonud.com

https://jira.whamcloud.com/browse/LU-18456
https://wiki.whamcloud.com/pages/viewpage.action?pageId=351437962

S

7/

Whamcloud

STORAGE

	Diapo 1
	Background & Objectives (Why TCU?)
	Trash Can/Undelete Core Features Overview
	Virtual “.Trash” Directory & User Access
	File organization under TCU
	The Deletion Process: Step-by-Step
	Quota & Space Accounting (​​LU-19143​​)​​
	Quota & Space Accounting (cont’)
	User Commands & Usage
	Make trash/ directory visible in client namespace
	Moving a regular file into trash
	Migrate a ”undeleted” directory into Trash Can
	Advanced Topics & Special Cases​​
	Further Development
	Summary
	Diapo 16

