
Yingjin Qian, Oleg Drokin, Andreas Dilger
September 2025

Lustre Trash Can Undelete (TCU)

whamcloud.com

Background & Objectives (Why TCU?)

► The Problem:
• Accidental file deletion by users or applications leads to permanent data loss and service

interruption:
• ”rm -rf” command with wrong filenames/wildcards (“fat finger mistakes”)
• Script errors
• Malicious deletion

► The Solution:
• Provide a "second chance" for deleted files
• Store deleting files temporarily by moving them to a hidden holding area before

permanently deleting them
• Delayed purging of deleted files by policy or explicit commands
• Allow marking files/directories to avoid trash (e.g. temporary files)

► Critical User Benefit:
• Provide a way for regular users to restore or retrieve deleted files immediately
• Drastically lower the number of data recovery tickets to administrators
• Files can be recovered from trash even if created+deleted after last backup
• ​Improved Data Safety:​​ Provide a configurable grace period against human/tool error

whamcloud.com

Trash Can/Undelete Core Features Overview

► “Delete” effectively becomes “Rename” on MDS
• Upon last unlink files are not immediately purged but renamed to hidden .lustre/trash/MDTxxxx

directory

• Applies to all forms of file deletion operations, not just “rm” or “unlink()” on updated clients

► File Restoration (Undelete)
• Users can restore files from trash to their original location or specified path

► Permanent Deletion / Empty Trash
• Users/admins can permanently delete files from Trash Can to free the used space

• Support emptying all deleted files at once

► Trash Can Space Usage
• Deleted file quota space usage is hidden from users by default

► Retention Policy
• Files are kept in Trash for a configurable "Grace Period" before cleanup

► Admin can enable/disable Trash Can feature on whole FS, users can disable on specific directory/files

whamcloud.com

Virtual “.Trash” Directory & User Access

► Concept: A virtual ”.Trash” directory is available in every filesystem directory
• Allow users to easily browse deleted files/directories under the current subdirectory in

the Trash Can
• Access deleted files/dirs for recovery via standard POSIX API
• Deleted files can be accessed in read-only mode to avoid (ab)use by users/applications

► User Experience: Easy access to deleted files via normal access methods
• ”ls –la $dir/.Trash” lists files deleted and moving into Trash Can for the directory $dir
• If no files are deleted from a directory, its ”.Trash” directory does not exist (ENOENT)
• Standard POSIX APIs (readdir(), stat()) work as normal on .Trash and deleted

files/subdirs therein
• Can use any command-line tools (ls, rm, rmdir, etc.), or file browsers if mounted on

workstation

► Implementation: Essentially a shortcut to the stub directory with parent directory’s pFID name
“.lustre/trash/MDTxxxx/NODEMAP/UID/pFID” (NODEMAP/ and UID/ optionally
configured)

► Special handling for striped and remote directories
• Access is unified through the virtual ”.Trash” directory, transparent to the user

whamcloud.com

File organization under TCU

► Usually configured via “mdd.*.trash_can_type”

► “plain”: all stub dir pFID are directly created under “.lustre/trash/MDTxxxx”
► “uid”: Per-User Trash Can (default)

• Per-User “.lustre/trash/MDTxxxx/UID”, owned by UID, mode 0700
• Avoid world readable access to deleted files on Trash Can
• De-conflict files/directories of the same name created by users
• Avoid exposing files to other users that may be private
• Allow tracking space usage more clearly of each UID
• A user’s data can be found and purged more quickly if they are exceeding their quota

► NODEMAP: Per-Nodemap (optionally + per-user) Trash Can
• NODEMAP TCU type can only (and always) be set from clients that are part of a nodemap
• Cannot configure via “mdd.*.trash_can_type”
• Divide into two categories according to the “mdd.*.trash_can_type” setting
o “plain”: lustre/trash/MDTxxxx/NODEMAP
o “uid”: lustre/trash/MDTxxxx/NODEMAP/UID

whamcloud.com

The Deletion Process: Step-by-Step

► On unlink()/rmdir() or unlink via rename() during the last unlink

1. Trash Can directory path depends if unlink sent from client in a nodemap or not
a) Nodemap: create local “.lustre/trash/MDTxxxx/NODEMAP” according to nodemap name
b) UID: create .lustre/trash/MDTxxxx/NODEMAP/UID” (if needed) and mdd.*.trash_can_type=uid

2. Stub directory Setup: Create the pFID stub directory if not exist:
a) Plain TCU type: Under “.lustre/trash/MDTxxxx/NODEMAP/pFID”
b) UID TCU type: Under “.lustre/trash/MDTxxxx/NODEMAP/UID/pFID”

3. Move/Migrate the victim file or directory object into the pFID stub directory
4. Change the original UID/GID/PROJID of file with Trash Can UID/GID/PROJID and update

the quota accounting
a) mdd.*.trash_can_uid
b) mdd.*.trash_can_gid
c) mdd.*.trash_can_projid

5. Save the original UID/GID/PROJID and timestamp to “trusted.unrm” XATTR which can
use for unrm/restore

6. Set LUSTRE_UNRM_FL=FS_UNRM_FL flag on the file moving into Trash Can

whamcloud.com

Quota & Space Accounting (​​LU-19143​​)​​

► Quota Transfer: Upon deletion, file’s original UID/GID/PROJID changed to dedicated Trash Can IDs
• User View: their quota usage decreases and reflects only “in use” files
• Trash Can View: quota usage is tracked under
trash_can_uid/trash_can_gid/trash_can_projid

• Default value for mdd.*.trash_can_[uid|gid|projid]=-2 means “deleted files change to
these IDs”
• Optionally mdd.*.trash_can_[uid|gid|projid]=-1 (original) means “keep original file IDs

in Trash”
o Respective UID, GID, and/or PROJID on the deleted file object is unchanged when it is deleted
o Quota continues to be tracked against original IDs for deleted files
o In this case it Is up to user to manage their own Trash Can usage to reduce quota usage
o To handle case where users abuse Trash Can to store files in rotation to avoid quota limits

► getattr() on deleted files has original ACL, and UID/GID/PROJID from “trusted.unrm” XATTR
• Allow file access/cleanup by original user, prevents access by other users

► Undelete/restore files in Trash Can
• Restore the original UID/GID/PROJID saved in “trusted.unrm” XATTR during rename
• Quota accounting is updated atomically by the backend OSD when IDs are changed
• Delete “trusted.unrm” XATTR from restored file

https://jira.whamcloud.com/browse/LU-19143

whamcloud.com

Quota & Space Accounting (cont’)

► df/statfs() reporting
• ”df” shows free inodes/space as if there were no files in the Trash Can
• The space/inodes used by Trash Can are added to the free space via trash_can_projid

quota
• “lfs df [--notrash]” also adjusts free inodes/space for space used by Trash Can
• “lfs df --trash” shows the actual free inodes/space without adjustment for Trash Can

usage

► Nodemap Interaction
• Allow configuring UID/GID/PROJID to which files in the Trash Can are assigned
• Can set per-nodemap trash_can_uid, trash_can_gid and trash_can_projid parameters
• These IDs are within the ID offset range of the nodemap
• Allow nodemap project quota group to account for all space used by the nodemap
• This isolates Trash Can usage for each nodemap from the regular UID/GID/PROJID of the

nodemap users
o A nodemap mounts with Lustre fileset, with llite.*.statfs_project=1 parameter set (default)
o PROJID is set on the fileset with PROJINHERIT flag
o "df SUBDIR" will use total = PROJID quota limits, and subtract PROJID quota usage from used

space/inodes counters
o Also adding free with adjustment used by per-nodemap trash_can_projid for statfs() results

whamcloud.com

User Commands & Usage

► Configuration (Administrator):
• lctl set_param mdd.*.trash_can_enable={0,1}
• lctl set_param mdd.*.trash_can_{uid|gid|projid}=ID

► User Commands:
• List files/directories deleted from current DIR: ls DIR/.Trash
• Display state of Trash Can: lfs trash state TARGETDIR
• Restore FILENAME to parent DIR: lfs trash unrm
DIR/.Trash/FILENAME
• Partially restore file/dir to different parent: lfs trash mv
DIR/.Trash/SRCDIR TGTDIR
• Permanently delete files in/under DIR from Trash: lfs trash clean [--
recursive] DIR

 or directly via POSIX API: rm [-rf]
DIR/.Trash/FILENAME
• Empty Trash for a specific user: lfs trash clean --user USER
MOUNTPOINT
• Empty Trash for files older than AGE: lfs trash clean --oldest AGE
MOUNTPOINT

whamcloud.com

Make trash/ directory visible in client namespace

► Deleted files moved to “.lustre/trash/MDTxxxx”
• Local directory on each MDT where the files are located

• Avoids cross-MDT rename overhead/locking

► Configure trash directories all MDTs after MDS stack setup:
• Trash directories for MDTs are created (if not

already present)
• Done after MDS stack setup and MDT has finished

recovery
• Visible in ROOT directory by path

“.lustre/trash/MDTxxxx”
• Can be accessed via normal POSIX I/O interface

from clients
o ”.lustre/trash/MDT0000” is a local directory for MDT0
o “.lustre/trash/MDTxxxx” for other MDTs are remote

subdirs

.lustre
/MDT0000

 directory

MDT index

trash/

MDT0000

MDT0000
/MDT0

MDT0001
/MDT1

MDTxxxx/

MDTx

…
…

local remote remote

whamcloud.com

Moving a regular file into trash

► “Last unlink” for file moving into trash will lookup (or create) a directory named with its parent’s FID

► This is the stub dir “pFID” in the MDT Trash Can directory where the file inode is located

► The regular file is moved into this pFID subdirectory on Trash Can

.lustre/trash/
MDT0001/

/mnt/fs1/d1/dir

“dir” on MDT1 with pFID: 0x200034021:0x1:0x0; “a” is a deleting regular file under
“dir/”

a 0x200034021:0x1:0x0/
deleting “a” 1. create/lookup pFID dir in trash

a

2. move file “a” into trash

Access trash from Lustre mountpoint on a client:
ls –R /mnt/fs1/.lustre/trash/MDT0001
.lustre/trash/MDT0001/0x200034021:0x1:0x0
.lustre/trash/MDT0001/0x200034021:0x1:0x0/a

Stub dir

Access via “.Trash” virtual directory on a client:
ls –R /mnt/fs1/d1/dir/.Trash
/mnt/fs1/d1/dir/.Trash/a

whamcloud.com

Migrate a ”undeleted” directory into Trash Can

► If deleting parent directory was previously empty, the operation is same as deleting a regular file

► When directory with pFID-named stub in trash is deleted, rename pFID stub to its original name

► Move into new pFID stub directory for its parent in trash
• Replicate its xattrs like crypt, selinux, etc. to preserve access permissions, fscrypt state,

user xattrs, etc.
• Finally destroy the original directory object that is now empty

.lustre/trash/
MDT0001/

0x200034021:0x2:0x0

a

pFID for ”dir/”

/mnt/fs1 Path: /mnt/fs1/d/dir/a
|_d/ FID: 0x200034021:0x1:0x0
 |_dir/ FID:
0x200034021:0x2:0x0
 |_a

.lustre/trash/
MDT0001/

0x200034021:0x1:0x0/

dir/

Create new pFID
stub for ”d/”

a

unlink
/mnt/fs1/d/dir/a

rmdir
/mnt/fs1/d/dir

Rename pFID stub dir
into new parent stub

whamcloud.com

Advanced Topics & Special Cases​​

► LUSTRE_NOTRASH_FL/FS_NODUMP_FL Attribute (LU-18958)
• Files or directories can be marked with the NOTRASH flag: chattr +d FILE; chattr –d
FILE
• Objects with this flag bypass Trash Can completely, destroyed immediately upon the last

unlink
• Ideal for directories with temporary files, or sensitive files that should not be recovered

► Repeated deletion of file/dir with same name and directory (LU-19239)
• Configurable whether only oldest or newest file is saved, or unique name is created
• Can append a timestamp to the filename in Trash to help identify file version

 e.g. file.2025-04-03-00:11:24, file.2025-04-03-01:32:17
• Configurable upper limit on versions to prevent trash from being overwhelmed by short-

lived files (TODO)

► Deleting symbolic links (symlink) (LU-19303)
• Treated as regular files. Link target (path) is preserved
• Deletion and restoration process is same as regular files

► Deletion via rename() operation (LU-19258)
• Running “mv FILE.tmp FILE“ will delete FILE into the Trash Can

https://jira.whamcloud.com/browse/LU-18958
https://jira.whamcloud.com/browse/LU-19239
https://jira.whamcloud.com/browse/LU-19303
https://jira.whamcloud.com/browse/LU-19258

whamcloud.com

Further Development

► File overwrite via open(O_TRUNC) / truncate(0) ​ (​​LU-19259​​)
• Allow moving data deleted via truncation into Trash Can
• Create a new temporary file on MDT with new OST objects in the Trash Can
• Copy attributes/xattrs from current file to temporary file
• Use existing ​​layout swap​​ functionality to swap objects and avoid data copy
• New data written transparently to new OST objects on old MDT inode

► Cleanup files from Trash Can for nearly full FS
• Need to automatically clean up Trash Can when filesystem nearly full or files are too old
• Scan MDT or OST devices for files in Trash Can via policy engine
• Check TRASH and NOTRASH attributes on files (both MDT and OST)
• Check the original UID/GID/PROJID and deletion timestamp stored in “trusted.unrm”

XATTR
• Choose candidate files and/or directories to be purged from Trash Can to free up space
• Potentially via MDS kernel thread for “basic/emergency” policy (e.g. delete oldest pFID

directory tree)
• Userspace policy engine for more sophisticated policy (age/space by user/project,

filename, etc.)

https://jira.whamcloud.com/browse/LU-19259
https://jira.whamcloud.com/browse/LU-19259
https://jira.whamcloud.com/browse/LU-19259
https://jira.whamcloud.com/browse/LU-19259

whamcloud.com

Summary

► Lustre Trash Can Undelete (TCU) enhances data protection and operational efficiency for Lustre

► TCU Core Value:
• Data Protection:​​ Significantly reduces risk of data loss from accidental or malicious

deletion
• User Experience:​​ Provides a familiar, convenient and user-friendly "undelete" operation
• ​​Operational Efficiency:​​ Reduces administrative interaction and overhead for data

recovery

► Limitations:
• Hardlink deletion, truncate, overwrite does not trigger Trash Can functionality
• May have negative impact on bulk unlink performance

► Current Status:
• Feature under active development (LU-18456)
• HLD document: https://wiki.whamcloud.com/pages/viewpage.action?pageId=351437962

https://jira.whamcloud.com/browse/LU-18456
https://wiki.whamcloud.com/pages/viewpage.action?pageId=351437962

	Diapo 1
	Background & Objectives (Why TCU?)
	Trash Can/Undelete Core Features Overview
	Virtual “.Trash” Directory & User Access
	File organization under TCU
	The Deletion Process: Step-by-Step
	Quota & Space Accounting (​​LU-19143​​)​​
	Quota & Space Accounting (cont’)
	User Commands & Usage
	Make trash/ directory visible in client namespace
	Moving a regular file into trash
	Migrate a ”undeleted” directory into Trash Can
	Advanced Topics & Special Cases​​
	Further Development
	Summary
	Diapo 16

