
LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

LAD 2025
Lustre Nodemap Update

Marc-André Vef & Sébastien Buisson

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Introduction

§ Multiple (remote) sites may use a single Lustre file system
§ Their User ID (UID), Group ID (GID), and Project ID* (PROJID) spaces may conflict
§ Nodemap is a long-established feature

§ Initially developed to solve ID conflicts by mapping client IDs to a global ID space
§ Introduced in Lustre 2.7 as a technology preview
§ Supported from Lustre 2.9 (2015)

§ Today, Nodemap supports many advanced features, including isolation:
§ ID map ranges and ID offsets
§ Role-based Admin Controls (RBAC)
§ Multiple filesets and dynamic nodemaps
§ Banning clients and more …

§ This talk will present the latest and upcoming developments of Nodemap

Lustre Nodemap Update | Marc-André Vef 2

*PROJID mapping support since Lustre 2.15

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

The core of Nodemap

§ Lustre distinguishes clients based on their Network Identifier (NID)
§ On client mount-time:

§ Lustre checks which nodemap the client NID is part of
§ Strong authentication (Kerberos or SSK) can verify client NIDs to prevent address spoofing

§ On FS access:
§ Nodemap’s ID mapping policy engine filters access for each client and ID
§ Map a client’s ID to their respective canonical FS ID based on the Nodemap’s configuration
§ All unknown client IDs are squashed
§ Apply further access conditions, e.g., RBAC

§ “Trusted” & “Admin” nodemap used for servers to operate on the canonical FS IDs

Lustre Nodemap Update | Marc-André Vef 3

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Nodemap mapping properties overview

§ Privileged access:
§ admin: root remains root
§ trusted: no explicit ID mapping, client IDs are kept as-is
Ø admin & trusted: for servers and administrative clients

§ Mapping options
§ idmap: client IDs are mapped to FS IDs
§ map_mode: enables ID mapping for UID, GID, and PROJID
§ offset: client IDs are automatically mapped to ID+OFFSET

§ Handling unmapped IDs:
§ squash_uid, squash_gid, squash_projid: IDs are squashed to set value if not mapped
§ deny_unknown: denies all access to unmapped IDs

Lustre Nodemap Update | Marc-André Vef 4

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

§ Create ”nm1” nodemap
§ NID ranges can’t overlap with any other range across all nodemaps

The basics

Lustre Nodemap Update | Marc-André Vef 5

mgs $ lctl nodemap_add nm1
mgs $ lctl nodemap_add_range --name nm1 --range 192.168.1.[100-200]@tcp
mgs $ lctl nodemap_add_range --name nm1 --range 192.168.2.[0-50]@tcp

mgs $ lctl nodemap_add_idmap --name nm1 --idtype uid --idmap 530:11000
mgs $ lctl nodemap_add_idmap --name nm1 --idtype gid --idmap 530:11000
mgs $ lctl nodemap_add_idmap --name nm1 --idtype projid --idmap 101:1001

*PROJID mapping support since Lustre 2.15

§ Define ID mappings*

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

The basics

§ The default nodemap is used for NIDs that can’t be assigned to any nodemap
§ Implementing special behavior compared to other nodemaps
§ It cannot be removed
§ No ID mapping can be defined
§ Be mindful of altering admin and trusted properties

§ Enable Nodemap
§ Nodemap activation is done globally and affects all nodemaps
§ Allow time for nodemap definitions to propagate
§ Change events are queued and distributed across the cluster in tens of seconds

Lustre Nodemap Update | Marc-André Vef 6

mgs # lctl nodemap_activate 1

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Nodemap isolation

Lustre Nodemap Update | Marc-André Vef 7

§ The isolation design includes filesets (subdirectory mount) and ID mapping

/lustre/ project1/

project2/

file1

file2

file3

Filesystem: /lustre

Allow access from client1 only

client1

client2

Allow access from client2 only

client3

Deny all access from other clients

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

ID range mapping

§ LU-17922 (Lustre 2.16) allows declaring idmap ranges
§ Extended syntax for lctl nodemap_add_idmap command:

§ <clientid_start> - <clientid_end> : <fsid_start> [- <fsid_end>]

§ fsid_end is optional

Lustre Nodemap Update | Marc-André Vef 8

Create ID mapping range
mgs $ lctl nodemap_add_idmap --name nm1 --idtype uid --idmap 500-510:10000

Delete ID mapping range
mgs $ lctl nodemap_del_idmap --name nm1 --idtype uid --idmap 500-510:10000

https://jira.whamcloud.com/browse/LU-17922
https://jira.whamcloud.com/browse/LU-17922
https://jira.whamcloud.com/browse/LU-17922
https://jira.whamcloud.com/browse/LU-17922

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

ID mapping offsets

§ LU-18109 (Lustre 2.17) allows ID mapping offsets
§ Challenges with individual ID mapping

§ Defining and maintaining mappings for each ID and nodemap can be time-consuming
§ Access or knowledge of nodemap ID may be unknown (Cloud Service Provider)
§ FS_ID isolation must be maintained manually

§ ID offsets automatically maps each local client_id to its global fs_id (ID+OFFSET)
§ No need for individual mapping rules
§ Offset ranges cannot overlap with another nodemap
ØGuarantee for disjoint ID spaces

Lustre Nodemap Update | Marc-André Vef 9

Map client_ids from range 0-49999 to fs_ids in range 100000-149999
mgs $ lctl nodemap_add_offset --name nm1 --offset 100000 --limit 50000

Deactivate offsets (does not affect existing mappings on files)
mgs $ lctl nodemap_del_offset --name nm1

https://jira.whamcloud.com/browse/LU-18109
https://jira.whamcloud.com/browse/LU-18109
https://jira.whamcloud.com/browse/LU-18109
https://jira.whamcloud.com/browse/LU-18109

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

ID mapping flow chart

Lustre Nodemap Update | Marc-André Vef 10

Is mapping enabled for id
type (UID/GID/PRJ)?

Is trusted=1?

Is id mapped?

Squash idMap id

Offset id

no

yes

yes no

yes

no

Is id root (0)?
no

yes

Is admin=1? no

yes

Client id

FS id

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Role-based admin controls (rbac)

§ LU-16524 (Lustre 2.16) allows to specify admin capabilities per nodemap
§ rbac roles are continuously added (some only for Lustre 2.17)
§ Available roles (multiple choices are possible):

§ byfid_ops: to allow operations by FID (e.g. lfs rmfid)
§ chlg_ops: to allow access to Lustre Changelogs
§ dne_ops: to allow operations related to DNE (e.g. lfs mkdir)
§ file_perms: to allow modifications of file permissions and owners
§ quota_ops: to allow quota modifications
§ fscrypt_admin: to allow fscrypt admin actions
§ ignore_root_prjquota: to control if project quota is enforced for root
§ pool_quota_ops: to allow pool specific quotas (e.g., lfs setquota --pool)
§ hsm_ops: to allow HSM actions (archive, release, restore, …)
§ local_admin: to keep root capabilities even if mapped
§ server_upcall: whether clients should use the server-side defined identity upcall

Lustre Nodemap Update | Marc-André Vef 11

https://jira.whamcloud.com/browse/LU-16524
https://jira.whamcloud.com/browse/LU-16524
https://jira.whamcloud.com/browse/LU-16524
https://jira.whamcloud.com/browse/LU-16524

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Deactivate nodemaps

§ LU-18469 (Lustre 2.17) allows to deactivate individual nodemaps
§ New mounts from clients associated with a nodemap are rejected
§ Mounted clients are unaffected
§ The deny_mount property controls this feature

Lustre Nodemap Update | Marc-André Vef 12

mgs $ lctl nodemap_modify --name nm1 --property deny_mount=1

https://jira.whamcloud.com/browse/LU-18469
https://jira.whamcloud.com/browse/LU-18469
https://jira.whamcloud.com/browse/LU-18469
https://jira.whamcloud.com/browse/LU-18469

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Preventing client access

§ LU-19157 (Lustre 2.17) allows banning clients based on their NID
§ Especially useful in environments where client nodes can’t be shut down
§ Client ban is done on the RPC-layer, but clients are not evicted (force un-mounted)

ØNew mount requests and RPCs from mounted clients that access the file system are denied
ØRe-allowing client access is instantaneous, and no re-mounting required

§ Preventing client access uses the banlist feature
§ On default nodemap: banned NID range cannot overlap with NID range of any nodemap
§ On normal nodemaps: banned NID range must be within NID range of the same nodemap
§ Name is not required: nodemap is derived from banned NID range – if not found, default is used

Lustre Nodemap Update | Marc-André Vef 13

Range must be included in NID range for nm1 nodemap
mgs $ lctl nodemap_banlist_{add,del} --name nm1 --range 192.168.1.[1-254]@tcp

Nodemap is derived from banned NID range
mgs $ lctl nodemap_banlist_{add,del} --range 192.168.1.[1-254]@tcp

https://jira.whamcloud.com/browse/LU-19157
https://jira.whamcloud.com/browse/LU-19157
https://jira.whamcloud.com/browse/LU-19157
https://jira.whamcloud.com/browse/LU-19157

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Sub-directory mounts and multiple filesets

§ Nodemap fileset restrict clients to a sub-directory introduced in Lustre 2.9
§ One fileset may be too limiting, e.g., shared resources required by many nodemaps
§ LU-18357 allows multiple filesets on a single nodemap (Lustre 2.17)

§ The “old” fileset is now called primary and is still the default fileset (only one primary fileset allowed)
§ Additional alternate filesets allow access to additional subdirectories (up to 255 alternate filesets)
§ Each fileset can be defined as read-only (forces mode=ro on mount)

§ Backward-compatible:
§ The existing fileset is transferred to be a primary fileset
§ Note: Defining filesets through lctl [-P] set_param is deprecated and should no longer be done!

§ New commands for adding and deleting filesets
§ Additional command for in-place fileset modification

§ Rename (change sub-directory path) and change type (primary or alternate)
§ Switch between read-only or read-write mode per fileset

Lustre Nodemap Update | Marc-André Vef 14

https://jira.whamcloud.com/browse/LU-18357
https://jira.whamcloud.com/browse/LU-18357
https://jira.whamcloud.com/browse/LU-18357
https://jira.whamcloud.com/browse/LU-18357

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Multiple filesets examples

Lustre Nodemap Update | Marc-André Vef 15

Create primary and alternate filesets
mgs $ lctl nodemap_fileset_add --name nm1 --fileset /dir1
mgs $ lctl nodemap_fileset_add --name nm1 --fileset /dir2 --alt
mgs $ lctl nodemap_fileset_add --name nm1 --fileset /data_src --alt --ro

Modify filesets
mgs $ lctl nodemap_fileset_modify --name nm1 --fileset '/dir1' --rename '/dir3'
mgs $ lctl nodemap_fileset_modify --name nm1 --fileset '/dir3' --ro --alt
mgs $ lctl nodemap_fileset_modify --name nm1 --fileset /dir2 --prim

Delete filesets
mgs $ lctl nodemap_fileset_del --name nm1 --fileset /dir3
mgs $ lctl nodemap_fileset_del --name nm1 --all

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Multiple filesets

§ The following rules apply when clients mount a subdirectory:
1. If the nodemap is inactive or no filesets are defined, no subdirectory restrictions are applied.
2. If the primary fileset is set and no subdirectory is presented when mounting the Lustre client, the

primary fileset's subdirectory is used as the file system root directory.
3. If any defined fileset (primary or alternate) matches the presented mounted subdirectory exactly or as a

prefix, the subdirectory mount is used as the file system root directory.
4. If the fileset matches in 3, the presented mounting subdirectory is appended to the fileset's subdirectory.

§ Only alternate filesets allowed: If no primary fileset is set, only 3 applies

Lustre Nodemap Update | Marc-André Vef 16

nodemap.nm1.fileset=
[
 { primary: /dir1 },
 { alternate: /dir2 },
 { alternate: /data_src, mode: ro }
]

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Dynamic nodemap

§ LU-17431 allows dynamic nodemaps (Lustre 2.17)
§ For ephemeral use cases that require frequent nodemap changes, e.g., in compute jobs
§ The current global mechanism requires synchronization time and is persistent
§ Dynamic nodemaps are…

§ in-memory only and must be created directly on the servers,
§ hierarchical with child-parent relationship including permission control, and
§ are removed on server restart or global nodemap changes.

§ Dynamic nodemaps refine the generic behavior of the parent nodemap
§ External orchestration recommended to set dynamic nodemaps on all MDSs and OSSs

§ clush –a lctl nodemap_add -d

Lustre Nodemap Update | Marc-André Vef 17

https://jira.whamcloud.com/browse/LU-17431
https://jira.whamcloud.com/browse/LU-17431
https://jira.whamcloud.com/browse/LU-17431
https://jira.whamcloud.com/browse/LU-17431

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Dynamic nodemap and permissions

§ Only dynamic nodemaps can have parents
§ Parent-child relationship for dynamic nodemaps:

§ A child must have a at least one persistent nodemap parent, possibly default
§ A child’s NID ranges must be within the parent’s NID ranges
§ A child inherits all properties and ID mappings from the parent on creation

§ A child can only lower privileges from the parent unless it grants permission to raise
§ New nodemap property child_raise_privileges defines properties a child can raise:

§ admin, trusted, deny_unknown, readonly_mount, forbid_encryption, caps, child_raise_privs
§ Also accepts all RBAC roles in additional
§ Defaults to none and can be set to all

Lustre Nodemap Update | Marc-André Vef 18

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Dynamic nodemap commands

Lustre Nodemap Update | Marc-André Vef 19

-d for dynamic; -p for parent nodemap
mgs $ lctl nodemap_add -d -p nm1 subnm1
NID range must be within parent's NID range
mgs $ lctl nodemap_add_range --name subnm1 --range 192.168.1.[100-150]@tcp
Other properties are inherited from parent nm1, e.g.,
nodemap.subnm1.admin_nodemap=0
nodemap.subnm1.fileset=/remote_dir
nodemap.subnm1.idmap=
[
{ idtype: uid, client_id: 530, fs_id: 11000 },
{ idtype: gid, client_id: 530, fs_id: 11000 },
{ idtype: projid, client_id: 101, fs_id: 1001 }
]
nodemap.subnm1.rbac=file_perms,dne_ops,quota_ops,byfid_ops,chlg_ops,fscrypt_admin
nodemap.subnm1.squash_gid=65534
nodemap.subnm1.squash_projid=65534
nodemap.subnm1.squash_uid=65534
nodemap.subnm1.trusted_nodemap=0

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Dynamic nodemap and multiple filesets

§ Parent nodemap namespace restrictions through filesets are passed on to children
§ With multiple filesets there are several considerations:

§ If the parent has filesets defined, a child must keep at least one
§ Additional filesets on the child can only further restrict the namespace
§ Read-only filesets cannot be set read-write (vice-versa allowed)
§ There are no restrictions which fileset must be primary or alternate

§ Note, a nodemap’s readonly_mount property overwrites fileset read-only settings
§ If the parent has no filesets, the child has no restrictions

Lustre Nodemap Update | Marc-André Vef 20

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Further improvements

§ Quality-of-life improvements (Lustre 2.17)
§ lctl nodemap [cmd] format is now possible
§ lctl nodemap_modify --name NODEMAP_NAME --property deny_mount=1 is now possible
§ lctl nodemap_info improvements:

§ The arguments --name and --property were added
§ Prints all nodemaps by default
§ Now fully supports YAML-format

§ OST object tagging with parent FID and UID/GID/PROJID (Lustre 2.17+)
§ Allows scanning the OST and getting the MDT FID from objects, e.g., when migrating files off an OST
§ Check OST objects against nodemap ID/offset mapping

§ Per-nodemap capabilities mask (Lustre 2.17)
§ New command: lctl nodemap_set_cap (instead of the global enable_cap_mask parameter)

Lustre Nodemap Update | Marc-André Vef 21

Define a capability mask as "cap_chown" on nodemap ‘nm1':
mgs $ lctl nodemap_set_cap --name nm1 --caps cap_chown --type mask

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Closing

§ Nodemaps were initially developed to solve conflicts on the ID space
§ Today, Nodemap is the core mechanism to support isolation

§ ID mapping with automatic offsets
§ Dynamic nodemaps and multiple filesets
§ A rich interface to control client permissions and capabilities through nodemaps

§ Several new features are introduced in Lustre 2.17. The highlights:
§ ID mapping offsets
§ Additional RBAC controls
§ Deactivation of nodemaps and banning clients
§ Ephemeral dynamic nodemaps including privileges control
§ Multiple filesets

§ Nodemap is still evolving with further features planned

Lustre Nodemap Update | Marc-André Vef 22

LAD25 – Lustre Admin & Dev Workshop | 30. Sep 2025

Marc-André Vef - mvef@whamcloud.com
Sébastien Buisson – sbuisson@whamcloud.com

Thank you!

mailto:mvef@whamcloud.com
mailto:sbuisson@whamcloud.com

