
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Exploring Lustre’s Erasure code feature

Current implementation, Sept 2025

James Simmons

Storage Systems Engineer

Oak Ridge National Laboratory

2

• Four rewrites during the 2.17 development cycle

− Heavy testing of Adam Disney / Bobi Jam version

− Component having both parity and data OST objects

− N data components to 1 parity mapping model

− Current version discussed here

⚫ Share for feedback with the community

• Why is ORNL interested

− Systems are always 85% full so no wide scale mirroring

− When things break it tends to be many things

− Team of code developers that work with users

What’s happen in the last year

3

Fundamentals for PFL parity implementation

• Extent expectation changed

− Extent align is not strict

− 2nd eof and 0 is considered a misalignment

− Code is such that parity can be placed almost anywhere in layout

• Data I/O and DoM must be first component in any mirror

• Parity settings are different then I/O components.

− Parity components are setup with comp IDs instead of extents

⚫ Allows parity for non I/O components (foreign and parity)

⚫ N to 1 parity component for non-IO components

⚫ Dependency between parity and components being parity checked

⚫ Foreign and data I/O together for parity component forbidden

⚫ Comp IDs can be mirror specific

− Why foreign component support?

⚫ LU-10606 and LU-14319

0 - 1MB 1MB - eof 0 – 1MB 1MB - eof

4

liblustreapi parity API additions

• New pattern LLAPI_LAYOUT_PARITY

− llapi_layout_pattern_set(layout, LLAPI_LAYOUT_PARITY)

− llapi_layout_pattern_get(layout, pattern)

⚫ Only returns LLAPI_LAYOUT_PARITY

• New lcme_flags – LCME_FL_PARITY

− llapi_layout_comp_flag_get(layout, flags)

− Can’t set LCME_FL_PARITY

• Parity setup

− llapi_layout_parity_count_get(layout, data_count, parity_count, comp_ids,
 id_count)

− llapi_layout_parity_count_set(layout, data_count, parity_count, comp_ids,
 id_count)

• llapi_layout_non_io_comp_add() *

− Same as llapi_layout_add_first_comp()

5

Existing liblustreapi API impacted by parity

• Parity sanity setup checking and final setup

− llapi_layout_(v2)_sanity(layout, incomplete, flr. ‘pool’)

⚫ This completes the parity component

− No automatic updating of parity

• Adding layout with parity to an already existing layout

− llapi_layout_merge(dst_layout, src_layout)

− lmm sent to kernel is only based on src_layout (ost_id fid set) for comp add

− For component addition and mirror setup

• Removing parity components

− llapi_layout_comp_del() - any parity can be removed, data I/O only last component.

⚫ Need to use llapi_layout_comp_iterate() to delete all parity components

• llapi_layout_file_comp_set()

− Don’t allow changing LCME_FL_PARITY setting

6

Purposed user land tools interface

• lfs setstripe -E 3M -S 1M -c 3 -I 1 -L ec:d3+p1 -E eof -S 1M -c 3 -I 3 ec:d3+p1

− Instead of -E we use -I since its comp IDs

− Order shouldn’t matter

• Lfs setstripe < yaml.conf

− Yes 1 to 1 parity to data component makes this painful. Sorry

• lfs mirror resync: update EC parity values.

− Layouts can get stale

• Concerns for future

− Doubling of layout entries might hit 64K xattr limit

− Limit of 256 parity components per layout is really 64 if you use all mirrors. 1:1 mapping limits
maximum data components to between 64 and 256 that is protected.

7

Internal kernel changes for parity work

• Challenges introduced by parity (LU-19298)

− lod: ldo_comp_entries, lov: lsm_entries. Struct lov_comp_md_v1 used by both

⚫ For lod we modify both ldo_comp_entries and lov_comp_md_v1

− ldo_comp_entries and lsm_entries are static arrays.

⚫ Adding or subtracting to static arrays is very limiting

⚫ Parity requires scans to figure out comp ec mappings

− Replace static arrays with Xarray

⚫ We can have gaps.

⚫ Xarray can be multi-tier

1 32 4 5 62 7

2 4 7 7

1

3

8

Conclusion

⚫ Erasure coding work is not dead. It is progressing and will be completed.

⚫ Present this information to help foster more I/O library development

− Allow development of new tools on top of the library

⚫ Presenting this work in a bazaar fashion

− Welcome feedback on the design from everyone

9

Acknowledgments

This work was performed under the auspices of the U.S. DOE by

Oak Ridge Leadership Computing Facility at ORNL under

contract DE-AC05-00OR22725.

	Slide 1: Exploring Lustre’s Erasure code feature
	Slide 2: What’s happen in the last year
	Slide 3: Fundamentals for PFL parity implementation
	Slide 4: liblustreapi parity API additions
	Slide 5: Existing liblustreapi API impacted by parity
	Slide 6: Purposed user land tools interface
	Slide 7: Internal kernel changes for parity work
	Slide 8: Conclusion
	Slide 9: Acknowledgments

