
Recent 
Developments 
and Lessons from 
Lustre
at the University of Cambridge



Background

We are Research Computing 
Services at the University of 
Cambridge
We serve:

 Cambridge users and students
 Several national research 

projects (IRIS, DIRAC, UKAEA)
 SKA project users
 UK AI Research Resource

 



Background

Services include:
 “Traditional” HPC workloads 

via SLURM
 IaaS clients via Openstack
 Trusted Research 

Environments

Served by:
 ~9Pb Isilon
 ~14Pb Tape
 ~8Pb Ceph
 40Pb Lustre



War Stories

1)Changelogs

2)Burstbuffer

3)Openstack



 Initial server deploy 
@2.7.X

 Size grows as 
needed for capacity

 No projid, so quota 
tracked by robinhood

War Stories 1: 
Changelogs



 Problem: Robinhood 
DB performance 
insufficient

 Expand by adding 
new filesystem

 Two DBs, split the 
workload

War Stories 1: 
Changelogs



 Natural conclusion:
 Five filesystems, one 

MDT, one MDS pair
 One got removed due 

to aging out hardware
 System upgraded to 

2.8, 2.10, 2.12

War Stories 1: 
Changelogs



War Stories 1: 
Changelogs

 Today’s situation:
 4 filesystems

 Approx 2Pb each

 Usually split load on 
each MDS



War Stories 1: 
Changelogs

 Mar  8 10:39:36 mds2 kernel: LustreError: 14439:0:(mdd_dir.c:1065:mdd_changelog_ns_store()) 
fs4-MDD0000: cannot store changelog record: type = 1, name = 'FIN_0001450000', t = 
[0x2000829e7:0x133de:0x0], p = [0x200083cea:0x50eb:0x0]: rc = -28

 Mar  8 10:39:36 mds2 kernel: LustreError: 14439:0 (mdd_dir.c:1065:mdd_changelog_ns_store()) 
Skipped 58 previous similar messages

 errno.h lookup:
 28 = ENOSPC “No space left on device”



War Stories 1: 
Changelogs

 e2fsck mdt
 checked capacity: plenty of 

space (~1Tb free)
 Retry mount
 Pacemaker kills mds due to 

timeout
 Force stops other mounts on 

server
 Attempted diagnostics stop 

all mounts



War Stories 1: 
Changelogs

 Remount all MDTs to MDS1
 Disable pacemaker
 Take backup
 Filesystem seemingly won’t mount
 Consider options:

 Mount as ldiskfs
 llog_reader on the changelog_catalog file 

lists 

 Wipe the changelog_catalog and 
all changelog entries?

 rec #2 type=1064553b len=64 offset 8256
 Header size : 8192       llh_size : 64
 Time : Thu Mar 3 13:35:05 2024
 Number of records: 1    cat_idx: 1      
last_idx: 2

 Target uuid : 
 -----------------------
 #02 (064)id=[0x154:0x1:0x0]:0 path=O/1/d20/340
 ...



War Stories 1: 
Changelogs

 One more try
 Mount with
 -o abort_recov
 fs4 mounts overnight
 changelog length reports at ~400billion
 Cleared out with
 lfs changelog_clear
 No direct intervention needed



War Stories 1: 
Changelogs

 Max number of 
changes in 2.12 is 
420 billion

 ~200GB needed



War Stories 1: 
Changelogs

 Conclusions:
● Possibly fixed by LU-12871 + LU-14699, but:

● Don’t put many eggs in one basket
● Make sure you have enough space for changelogs
● Monitor changelogs in case of unexpected increases
● Make sure
mdd.*.changelog_gc

● is set to 1!



War Stories 2: 
NVMe

 New AI supercomputer



War Stories 2: 
NVMe

 4 X 200 Gb/s. 100 GB/s
 96 CPU cores
 1TB RAM
 Doing a lot of data 

processing
 Needs suitable 

performant filesystem 
for bursty workloads

 dell.com

 image taken 2025-09-02



War Stories 2: 
NVMe

 Lustre built for 
performance

 Available NVMe’s lack 
resilience
 JBOF, no switching

 Data not needed to be 
resilient

 Filesystem uptime 
important  serversupply.com

 image taken 2025-09-02



War Stories 2: 
NVMe

 Only MGS/MDT0000 needed 
for FS access – replicate 
these (DRDB, no 
performance)

 All other MDTs single-pathed
 All OSTs single-pathed
 (Single) failure – drop server 

out, disable MDT/OSTs in 
MGS, keep going



 Each server has 100GB/s (4x200Gb) 
network to block

 This matches one client’s performance 
per node
 One client cannot use more than 1 server’s worth of 

bandwidth

 Control placement using pools

War Stories 2: 
NVMe



War Stories 2: 
NVMe

 Control placement using 
pools
 Max client llog size 

bumped into at 64k
 Cannot have more than 

20,000 pool/pool 
member entries



War Stories 2: 
NVMe

 1.8 TB/s total theoretical
 Can we prove that?



War Stories 2: 
NVMe Performance 20% of expected 
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War Stories 2: 
NVMe

 There are some clues:
 portal_rotor set to ON, so not limited at 25% per client due to 

single network connection
 Some issues with page cache a couple of years ago.
 What about O_DIRECT?



War Stories 2: 
NVMe

IOR Performance with Directio close to linespeed
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War Stories 2: 
NVMe

 Page Cache cannot empty fast enough – varies 5-12 GB/s. 

 DirectIO is the way to go, but needs code changes

 Can we do it using HybridIO instead? (new to 2.16)



War Stories 2: 
NVMe

Hybrid IO on - ~55GB/s with FIO benchmark
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War Stories 2: 
NVMe

Compare fio in O_DIRECT
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War Stories 2: 
NVMe

 Significant Single Node improvement with hybrid IO
 No code changes
 A little less performance than O_DIRECT
 HybridIO untuned – can still be improved



War Stories 3: 
Openstack

 Software defined infrastructure
 “hybrid cloud”
 satisfies cloud-first strategies

 Powerful central control of multi-tenant infrastructure
 Consistent APIs

 Good ansible modules
 Allows for storing physical deployment in code

 Core components:
 Nova – compute resources
 Neutron – network resources
 Ironic – getting Nova to deploy directly onto hardware



War Stories 3: 
Openstack

 Lots of knowledge of Openstack in Cambridge
 Links to StackHPC for upstream bugfix

 Very powerful for deployment of compute nodes
 New images once a fortnight

 Can we do this for storage?

 How do we even create openstack servers?



War Stories 3: 
Openstack



 Enroll
 Simply make openstack aware node exists
 Find and verify network config

War Stories 3: 
Openstack



War Stories 3: 
Openstack

 Inspect
 Switch VLAN to inspect VLAN
 Boot image, run code to look at machine



War Stories 3: 
Openstack

 Clean
 Switch VLAN to clean VLAN
 Delete old OS and make blank
 Delete all storage



War Stories 3: 
Openstack

 Deploy
 Switch VLAN to deploy VLAN
 Image new OS and boot
 Switch VLAN to production VLAN



War Stories 3: 
Openstack

 Deleted
 Machine goes back to 

cleaning step



War Stories 3: 
Openstack

 Risks
 Unmanned cleaning step can wipe attached data

 Mitigations
 Prevent unacknowledged cleaning step



War Stories 3: 
Openstack

 Solutions:
 Blacklist SAS kernel module in cleaning image

 Will prevent external storage from being deleted

 Prevent nodes from going to clean VLAN
 Stops unacknowledged clean steps through mistakes

 Lock nodes to prevent deletion



War Stories 3: 
Openstack

 Conclusions:
 Works well!
 Provides test and prod environment that match
 Allows for more fine-control of power states than IPMI



Thank you!



War Stories 1: 
Changelogs



War Stories 2: 
NVMe



War Stories 3: 
Openstack
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