
Recent
Developments
and Lessons from
Lustre
at the University of Cambridge

Background

We are Research Computing
Services at the University of
Cambridge
We serve:

 Cambridge users and students
 Several national research

projects (IRIS, DIRAC, UKAEA)
 SKA project users
 UK AI Research Resource

Background

Services include:
 “Traditional” HPC workloads

via SLURM
 IaaS clients via Openstack
 Trusted Research

Environments

Served by:
 ~9Pb Isilon
 ~14Pb Tape
 ~8Pb Ceph
 40Pb Lustre

War Stories

1)Changelogs

2)Burstbuffer

3)Openstack

 Initial server deploy
@2.7.X

 Size grows as
needed for capacity

 No projid, so quota
tracked by robinhood

War Stories 1:
Changelogs

 Problem: Robinhood
DB performance
insufficient

 Expand by adding
new filesystem

 Two DBs, split the
workload

War Stories 1:
Changelogs

 Natural conclusion:
 Five filesystems, one

MDT, one MDS pair
 One got removed due

to aging out hardware
 System upgraded to

2.8, 2.10, 2.12

War Stories 1:
Changelogs

War Stories 1:
Changelogs

 Today’s situation:
 4 filesystems

 Approx 2Pb each

 Usually split load on
each MDS

War Stories 1:
Changelogs

 Mar 8 10:39:36 mds2 kernel: LustreError: 14439:0:(mdd_dir.c:1065:mdd_changelog_ns_store())
fs4-MDD0000: cannot store changelog record: type = 1, name = 'FIN_0001450000', t =
[0x2000829e7:0x133de:0x0], p = [0x200083cea:0x50eb:0x0]: rc = -28

 Mar 8 10:39:36 mds2 kernel: LustreError: 14439:0 (mdd_dir.c:1065:mdd_changelog_ns_store())
Skipped 58 previous similar messages

 errno.h lookup:
 28 = ENOSPC “No space left on device”

War Stories 1:
Changelogs

 e2fsck mdt
 checked capacity: plenty of

space (~1Tb free)
 Retry mount
 Pacemaker kills mds due to

timeout
 Force stops other mounts on

server
 Attempted diagnostics stop

all mounts

War Stories 1:
Changelogs

 Remount all MDTs to MDS1
 Disable pacemaker
 Take backup
 Filesystem seemingly won’t mount
 Consider options:

 Mount as ldiskfs
 llog_reader on the changelog_catalog file

lists

 Wipe the changelog_catalog and
all changelog entries?

 rec #2 type=1064553b len=64 offset 8256
 Header size : 8192 llh_size : 64
 Time : Thu Mar 3 13:35:05 2024
 Number of records: 1 cat_idx: 1
last_idx: 2

 Target uuid :
 -----------------------
 #02 (064)id=[0x154:0x1:0x0]:0 path=O/1/d20/340
 ...

War Stories 1:
Changelogs

 One more try
 Mount with
 -o abort_recov
 fs4 mounts overnight
 changelog length reports at ~400billion
 Cleared out with
 lfs changelog_clear
 No direct intervention needed

War Stories 1:
Changelogs

 Max number of
changes in 2.12 is
420 billion

 ~200GB needed

War Stories 1:
Changelogs

 Conclusions:
● Possibly fixed by LU-12871 + LU-14699, but:

● Don’t put many eggs in one basket
● Make sure you have enough space for changelogs
● Monitor changelogs in case of unexpected increases
● Make sure
mdd.*.changelog_gc

● is set to 1!

War Stories 2:
NVMe

 New AI supercomputer

War Stories 2:
NVMe

 4 X 200 Gb/s. 100 GB/s
 96 CPU cores
 1TB RAM
 Doing a lot of data

processing
 Needs suitable

performant filesystem
for bursty workloads

 dell.com

 image taken 2025-09-02

War Stories 2:
NVMe

 Lustre built for
performance

 Available NVMe’s lack
resilience
 JBOF, no switching

 Data not needed to be
resilient

 Filesystem uptime
important  serversupply.com

 image taken 2025-09-02

War Stories 2:
NVMe

 Only MGS/MDT0000 needed
for FS access – replicate
these (DRDB, no
performance)

 All other MDTs single-pathed
 All OSTs single-pathed
 (Single) failure – drop server

out, disable MDT/OSTs in
MGS, keep going

 Each server has 100GB/s (4x200Gb)
network to block

 This matches one client’s performance
per node
 One client cannot use more than 1 server’s worth of

bandwidth

 Control placement using pools

War Stories 2:
NVMe

War Stories 2:
NVMe

 Control placement using
pools
 Max client llog size

bumped into at 64k
 Cannot have more than

20,000 pool/pool
member entries

War Stories 2:
NVMe

 1.8 TB/s total theoretical
 Can we prove that?

War Stories 2:
NVMe Performance 20% of expected

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

IOR Write

Number of MPI Ranks

IO
R

Th
ro

ug
hp

ut
 (G

B/
s)

War Stories 2:
NVMe

 There are some clues:
 portal_rotor set to ON, so not limited at 25% per client due to

single network connection
 Some issues with page cache a couple of years ago.
 What about O_DIRECT?

War Stories 2:
NVMe

IOR Performance with Directio close to linespeed

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

IOR Write

DirectIO
NoDirectIO

Number of MPI Ranks

IO
R

Th
ro

ug
hp

ut
 (G

B/
s)

War Stories 2:
NVMe

 Page Cache cannot empty fast enough – varies 5-12 GB/s.

 DirectIO is the way to go, but needs code changes

 Can we do it using HybridIO instead? (new to 2.16)

War Stories 2:
NVMe

Hybrid IO on - ~55GB/s with FIO benchmark

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100
Fio Write Data

 Lustre 2.16.1 - Hybrid IO

 Lustre 2.16.1 - normal IO

Number of MPI Ranks

FI
O

Th
ro

ug
hp

ut
 (G

B/
s)

War Stories 2:
NVMe

Compare fio in O_DIRECT

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100
Fio Write Data

 Lustre 2.15.6 - normal IO

 Lustre 2.15.6 – direct IO

Number of MPI Ranks

FI
O

Th
ro

ug
hp

ut
 (G

B/
s)

War Stories 2:
NVMe

 Significant Single Node improvement with hybrid IO
 No code changes
 A little less performance than O_DIRECT
 HybridIO untuned – can still be improved

War Stories 3:
Openstack

 Software defined infrastructure
 “hybrid cloud”
 satisfies cloud-first strategies

 Powerful central control of multi-tenant infrastructure
 Consistent APIs

 Good ansible modules
 Allows for storing physical deployment in code

 Core components:
 Nova – compute resources
 Neutron – network resources
 Ironic – getting Nova to deploy directly onto hardware

War Stories 3:
Openstack

 Lots of knowledge of Openstack in Cambridge
 Links to StackHPC for upstream bugfix

 Very powerful for deployment of compute nodes
 New images once a fortnight

 Can we do this for storage?

 How do we even create openstack servers?

War Stories 3:
Openstack

 Enroll
 Simply make openstack aware node exists
 Find and verify network config

War Stories 3:
Openstack

War Stories 3:
Openstack

 Inspect
 Switch VLAN to inspect VLAN
 Boot image, run code to look at machine

War Stories 3:
Openstack

 Clean
 Switch VLAN to clean VLAN
 Delete old OS and make blank
 Delete all storage

War Stories 3:
Openstack

 Deploy
 Switch VLAN to deploy VLAN
 Image new OS and boot
 Switch VLAN to production VLAN

War Stories 3:
Openstack

 Deleted
 Machine goes back to

cleaning step

War Stories 3:
Openstack

 Risks
 Unmanned cleaning step can wipe attached data

 Mitigations
 Prevent unacknowledged cleaning step

War Stories 3:
Openstack

 Solutions:
 Blacklist SAS kernel module in cleaning image

 Will prevent external storage from being deleted

 Prevent nodes from going to clean VLAN
 Stops unacknowledged clean steps through mistakes

 Lock nodes to prevent deletion

War Stories 3:
Openstack

 Conclusions:
 Works well!
 Provides test and prod environment that match
 Allows for more fine-control of power states than IPMI

Thank you!

War Stories 1:
Changelogs

War Stories 2:
NVMe

War Stories 3:
Openstack

	Recent Developments and Lessons from Lustre
	Background
	Background (2)
	War Stories
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

