=VID&N

Implementing an LND for the BXIv3
network

Quentin Boyer
30/09/2025

=VID&N

Content overview

LNet and LNDs

BXI Interconnect

Design of bxi3Ind

Remaining Work

=2 NETAEXA

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grantagreement No101175702. The JU receives support from the
European Union's Horizon Europe research and innovation programme and France, Greece,
Italy, Norway.

=VID&N

(Vp)
A
Z
—
O

C

(qv)
4

()
Z
—
o

LNet semantics

LNet is based on Portals 3 semantics.

It allows callers to expose memory descriptors (MD) to the network, using
match entries (ME) to allow receiving data on them.

no— B e

The role of an LND is to implement the data transfer part of a put or get
operation. LNet performs the matching of entries and bookeeping of
memory descriptors itself.

=VIDEN

LNet scalabilty

In order to guarantee scalability there are two important concepts :

- CPT, CPU Partition Table, which allow independent progression of
operations on distinct CPUs

- Credit management, which allows to limit the amount of messages sent
on the fabric to avoid overwhelming it

In particular, this means that each NI has n transmission queues (one for

each CPT), each using independent credits.
Waiting Credits In flight

=VIDEN

LNet wire protocol

LNet uses 4 kind of messages : Put, Ack, Get, Reply
Messages can have lengths from 0 bytes to 1 MiB
Data payloads may be split into 256 iovec segments

LNetPut LNetGet

 GEr

Ak

=VIDEN

LND Interface

An LND (Lustre Network Driver) has two main callbacks to implement :
-lnd_send
- lnd_recv

May wait for credits

LNetPut Ind_send

LND

LND data
transfer Inet_parse

Ind_recv Inet_finalize

Inet_finalize internal
completion

=VIDEN

LND Get optimization

LNet allows LND to bypass it to send data from a Get :

LNetGet Ind_send LND get request
Inet_parse
Inet_finalize

Inet_finalize(get) Internal LND data

LND rx transfer Ind_recv

Inet_finalize(reply) handler

=VIDEN

=VID&N

4
O
()
C
C
@)
@)
-
Q
)
i=
>
)
(@N|
(@)

BXI Interconnect

Current version : BXlv2
Based on the Portals4 specification, mostly implemented in hardware

Performance : ~90 Gb/s, 20 Million msg/s, 2.5 us

Version in development : BXIv3

Still based on the Portals4 specification

Performance targets : 400 Gb/s, 200 Million msg/s, 1 us

New features : Congestion management, Increased Parallelism, Increased
Asynchrononism

=VIDEN N

Lustre with BXI

Eviden has developed an LND named ptl4ind for BXIv2.
This LND has not been upstreamed.

In order to take advantage of new features in BXIv3 a new LND is being

developed, named bxi3Ind.
This LND is meant to be upstreamed once it is sufficiently featureful.

=VIDEN N

Portals 4.3 Semantics : Locally managed entries

Initiator Target
ME ME

MD

— 5
\

=VIDEN

12

Portals 4.3 Semantics : Use once entries

Initiator Target

ME ME

© Eviden SAS

=VIDEN

Portals 4.3 Semantics : Event notification

Initiator

ACK (beef)
ACK (bar)
ACK (foo)

=VIDEN

Tail

Head

&terru pt

PUT (context = beef)

Target

PUT (13)

(
PUT (13)
PUT (13)
PUT (13)

Tail

Head

&terru pt

© Eviden SAS

ME

12345

14

Flow control

Initiator

=VIDEN

MD

Tail

PUT (context = beef)

Target

PUT (13)
PUT (13)
PUT (13)

PUT (13)
PUT (13)

© Eviden SAS

Head

- Drop PUT
- Disable PTE
- Generated PTL_PT_DISABLED event

ME

12345

15

S
L
M
X
O
Y
@)
C
20
(Vp)
()
A
™M
(@)

=VID&N

Design Principles

- Saturate the BXIv3 NIC (for message rate and for bandwith)
-Try to rely as much as possible on Portals features exposed by the NIC
- Use as much parallelism as possible

- Do not maintain a state (by default) for each peer

=VIDEN N

Global Architecture

Node A

Bulk Bulk Bulk
ME 37 ME 42 PTE

TX context O

RX context O

ATO->A.R0O A.TO->B.R1

TX context 1 l/
AT1->AR1 AT1->B.RO ‘V I, RX context 1
AT2->AR0 AT2->BR1 | piee i ‘\ /
TX context O “‘ ‘
{)
BTO->AR1 B.TO->B.RO [04 colniiods /‘

\‘ RX context 0
B.T1 -> A.RO B.T1 -> B.R1 l’ \
B.T2 -> A.R1 B.T2 -> B.RO TX context 2 ‘
B.T3 -> A.RO B.T3 -> B.R1 RX context 1

TX context 3

Node B
=VID&N 18

Handling of events

In order to dispatch events to multiple threads (if a CPT uses them) we
have the following architecture.

Each CPT has a dedicated IRQ. Worker threads
Pull from queue Handle event
Threaded IRQ
interrupt PtIEQGet() Add to queue Pull from queue
\\
Pull from queue

=VIDEN 19

Message types

The BXIv3 LND uses (like most LNDs) two kind of messages :
- Immediate (for ACKs, small GET, small REPLY and small PUT)
- Bulk (for large GET, PUT and REPLY)

An immediate must fit inside an MTU, meaning it can be at most 9088
bytes total, with 8980 bytes of data payload.

Bulk GET messages can't target routers, an immediate GET will be
performed, resulting in a bulk REPLY.

=VIDEN

© Eviden SAS

Immediate messages

dma_map data buffer (sgl) a

_ , Default values : 128 buffers of 1 MiB
build a BXI iovec from the sgl @

ReS.IL.JESt Request ME @ Request ME @ Request ME

PUT |event
Receive ACK @) Inet_parse @)
Ind| recv
\ 4
copy data to dest 9

=VIDEN 21

send iovec ©) PUT to request PTE

Bulk messages

dma_map data buffer (sgl) O
build a BXI iovec from the sgl Q
Append an ME for the data 9
Send bulk requestﬂ

Wait for data
event

v
Inet_finalizeg

=VIDEN

ME
(match = 42)

PUT (bulk request)

© Eviden SAS

PUT |event
Inet_parse G

Ind| recv

l . map buffers @

Request ME

perform data transfer)

Inet_finalize@

22

Bulk message timeouts

Immediate messages : Request only
Bulk messages : Request + Reply
— Issue if reply never comes

Handling the timeout is tricky, because there can be a race between the
timeout triggering and the reply arriving on the network

=VIDEN N

Ressource exhaustion

The LND has several resources that can be exhausted :
- Event queue slots

-TX EQ — Size = 2 x credits, can't be overflown by LNet

- RX EQ — Enable portals flow control on RX PTE

- Bulk EQ — Queue transmissions while too many are in-flight
- Request buffers on RX contexts

- Will trigger flow control
-Space in the event workqueue

- Avoid calling PtIEQGet() —» Keep getting interrupted

=VIDEN N

Flow control recovery procedure

Two possible causes on the target :

- EQ exhaustion — Solved by the time we have found the event
- Buffer exhaustion : Two situations

- Buffers are being reposted — Nothing to do

-Too many buffers are still in use due to a Inet_parse call — Allocate
new buffers and avoid re-posting the old ones

Inititiator handling : Resend the affected messages

=VIDEN

© Eviden SAS

=VID&N

'
-
2
oY)
=
=
Qv
-
)
ad
4
o

Implementation status

Not all the described design has been implemented :

- No bulk LNetPut (all other communication are done)

- No router handling / testing

-Only 1 RX context and 1 TX context is used (but all RX and TX contexts
are allocated)

- Missing some debugging informations
- Missing some injections for misc error paths (major paths like timeouts

are tested)

=VIDEN N

Tuning to be done when hardware is availaible

- How many RX contexts ? 8 for now
- How many RX buffers ? Which size ?
- Optimal credits count ?
- Timeouts ?
- Request timeout (LNet level)
- Bulk timeout (LND level)
- Linearization or iovec for immediate messages ?
- Immediate vs Bulk limit ?

=VIDEN N

Unanswered questions

The presented design is mostly ordered with two main re-ordering
points, should the LND internally re-order the messages ? :

- Event re-ordering in the NIC / Races in event queue workers
- Reordering due to flow control recovery

\\ Flow control
recovery

iy Parse PUT 3

Parse PUT 1

Parse PUT 2

R
Q
V
-
S A
N &
J [
SN
Ny N
@
%

=VIDEN

29

=VID&N

Questions ?

=VID&N

Thank you !

For more information please contact :
quentin.boyer@eviden.com

Confidential information owned by Eviden SAS, to be used by the recipient only. This
document, or any part of it, may not be reproduced, copied, circulated and/or
distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS

Bulk message timeouts race handling

Cmpxchg status Cmpxchg status

return ME Unlink

Wait completion

Delete timer

complete finalize

finalize

=VIDEN

Network

32

